Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (4): 479-486    DOI: 10.11900/0412.1961.2016.00289
Orginal Article Current Issue | Archive | Adv Search |
Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys
Peng JIN1,Ran SUI2,Fuxiang LI1,Weiyuan YU1,Qiaoli LIN1()
1 State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
Cite this article: 

Peng JIN,Ran SUI,Fuxiang LI,Weiyuan YU,Qiaoli LIN. Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys. Acta Metall Sin, 2017, 53(4): 479-486.

Download:  HTML  PDF(5282KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the inoxidizability of TC4 alloy at high temperatures, hot dip aluminizing process is an efficient and economical way for industrial application. In this process, the wetting of TC4 alloy by molten Al alloy is the main factor which determined the coating quality. In this work, wetting of TC4 alloys by two industrial grade Al alloys (i.e., 6061 Al and 4043 Al alloys) were studied by using the modified sessile drop method at 600~700 ℃ under high vacuum. The results show that Al/Ti system is a typical reactive wetting, and the spreading dynamics can be described by reaction product control model, further the whole wetting behavior can be divided into two stages: the first stage for the nonlinear spreading and the second stage for the linear spreading. The small amount of alloying element Si in the Al alloys can cause significantly segregation at liquid/solid interface and formation of the Si-rich phase (Ti7Al5Si12). Ti7Al5Si12 decomposition is responsible for the nonlinear spreading, and Ti7Al5Si12 decomposition and Al3Ti formation are together responsible for the linear spreading. The formation of precursor film accompanies with the good final wettability.

Key words:  precursor film      Ti-6Al-4V      interfacial reaction     
Received:  07 July 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51665031 and 51465032)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00289     OR     https://www.ams.org.cn/EN/Y2017/V53/I4/479

Fig.1  Schematic of the experimental apparatus
Material C V Fe Si Mg Zn Ti Al
4043 Al alloy - - 0.80 5.00 0.05 - 0.20 Bal.
6061 Al alloy - - 0.70 0.60 0.90 0.25 0.15 Bal.
TC4 0.10 3.50~4.50 0.30 - - - Bal. 5.60~5.80
Table 1  Nominal chemical composition of materials (mass fraction / %)
Fig.2  Variation of contact angles (a) and normalized contact radii (b) with time of molten 6061 Al and 4043 Al alloys on the surface of TC4 substrate (Rd and R0—the dynamic and initial contact radii, t—time for isothermal wetting)
Fig.3  SEM images for 6061 Al/TC4 system after isothermal wetting at 600 ℃
(a) cross-sectional view (Inset shows the high magnified image)
(b) top view at the close of triple line
(c) high magnified image of rectangular zone in Fig.3b
(d) interfacial microstructure and element line distributions
Fig.4  SEM images for 4043 Al/TC4 system after isothermal wetting at 600 ℃
(a) at the close of triple line
(b) central position of interface and element line distributions
Fig.5  SEM images for 4043 Al/TC4 system after isothermal wetting at 650 ℃
(a) cross-sectional view
(b) top-view at the close of triple line
(c) high magnified image of rectangle zone in Fig.5b
(d) interfacial microstructures and element line distributions
Fig.6  Macro-morphologies and SEM images for Al/TC4 samples after Al was removed by NaOH solution
(a) macro-morphology for 4043 Al/TC4 sample
(b, c) corresponding details in Fig.6a
(d) macro-morphology for 6061 Al/TC4 sample
(e, f) corresponding details in Fig.6d
Fig.7  XRD spectra of the phases at the precursor films for 6061 Al (a) and 4043 Al (b) samples after isothermal wetting at 700 ℃, the exposed interface of 4043 Al/TC4 after isothermal wetting at 650 ℃ through removing of the solidified Al (c), the exposed interface of 6061 Al/TC4 after isothermal wetting at 650 ℃ through removing of the solidified Al (d), and the original surface of TC4 alloy (e)
Fig.8  Arrhenius plot of the kinetic constant k1 and k2
[1] Leyens C, Peters M, Kaysser W A. Intermetallic Ti-Al coatings for protection of titanium alloys: Oxidation and mechanical behavior [J]. Surf. Coat. Technol., 1997, 94-95: 34
[2] Du H L, Datta P K, Lewis D B, et al.Air oxidation behaviour of Ti-6Al-4V alloy between 650 and 850 ℃[J]. Corros. Sci., 1994, 36: 631
[3] Zhang Z G, Peng Y P, Mao Y L, et al.Effect of hot-dip aluminizing on the oxidation resistance of Ti-6Al-4V alloy at high temperatures[J]. Corros. Sci., 2012, 55: 187
[4] Liu D M, Zhu Z W, Li Z K, et al.Wetting behavior and interface characteristic of Ti32.8Zr30.2Ni5.3Cu9Be22.7/Ti6Al4V[J]. Mater. Sci. Forum, 2016, 849: 385
[5] Liu C C, Ou C L, Shiue R K.The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys[J]. J. Mater. Sci., 2002, 37: 2225
[6] Tashi S R, Mousavi A S A A, Atabaki M M. Diffusion brazing of Ti-6Al-4V and stainless steel 316L using Ag-Cu-Zn filler metal[J]. Metall. Mater. Eng., 2013, 19: 189
[7] Gremillard L, Saiz E, Radmilovic V R, et al.Role of titanium on the reactive spreading of leading-free solders on alumina[J]. J. Mater. Res., 2006, 21: 3222
[8] Eustathopoulos N, Nicholas M G, Drevet B.Wettability at High Temperatures[M]. Oxford: Elsevier, 1999: 198
[9] Kim C, Kang S C, Baldwin D F.Experimental evaluation of wetting dynamics models for Sn63Pb37 and SnAg4.0Cu0.5 solder materials[J]. J. Appl. Phys., 2008, 104: 033537
[10] Yin L, Meschter S J, Singler T J.Wetting in the Au-Sn system[J]. Acta Mater., 2004, 52: 2873
[11] Zhang R F, Sheng S H, Liu B X.Predicting the formation enthalpies of binary intermetallic compounds[J]. Chem. Phys. Lett., 2007, 442: 511
[12] Lin Q L, Qiu F, Sui R.Characteristics of precursor film in the wetting of Zr-based alloys on ZrC substrate at 1253 K[J]. Thin Solid Films, 2014, 558: 231
[13] Leger L, Erman M, Guinet-Picard A M, et al. Precursor film profiles of spreading liquid drops[J]. Phys. Rev. Lett., 1988, 60: 2390
[14] Voinov O V.Wetting line dynamics in the process of drop spreading[J]. J. Colloid. Int. Sci., 2000, 226: 22
[15] Xian A P.Precursor film of tin-based active solder wetting on ceramics[J]. J. Mater. Sci., 1993, 28: 1019
[16] Zhuang H S, Lugscheider E.High Temperature Brazing[M]. Beijing: National Defense Industry, 1989: 163
[17] Dezellus O, Hodaj F, Eustathopoulos N.Progress in modelling of chemical-reaction limited wetting[J]. J. Eur. Ceram. Soc., 2003, 23: 2797
[18] Barin I.Thermochemical Data of Pure Substances[M]. 3rd Ed., Weinheim: Wiley-VCH Verlag GmbH, 1995: 1
[19] Protsenko P, Terlain A, Traskine V, et al.The role of intermetallics in wetting in metallic systems[J]. Scr. Mater., 2001, 45: 1439
[20] Gomez-Moreno O, Coudurier L, Eustathopoulos N.Role of adsorption in the wettability of solid iron by lead and its alloys[J]. Acta Metall., 1982, 30: 831
[21] Nicholas M, Poole D M.The influence of oxygen on wetting and bonding in the copper-tungsten system[J]. J. Mater. Sci., 1967, 2: 269
[22] Liashenko O Y, Hodaj F.Wetting and spreading kinetics of liquid Sn on Ag and Ag3Sn substrates[J]. Scr. Mater., 2017, 127: 24
[23] Bougiouri V, Voytovych R, Dezellus O, et al.Wetting and reactivity in Ni-Si/C system: Experiments versus model predictions[J]. J. Mater. Sci., 2007, 42: 2016
[24] Dezellus O, Jacques S, Hodaj F, et al.Wetting and infiltration of carbon by liquid silicon[J]. J. Mater. Sci., 2005, 40: 2307
[25] Dezellus O, Hodaj F, Eustathopoulos N.Chemical reaction-limited spreading: The triple line velocity versus contact angle relation[J]. Acta Mater., 2002, 50: 4741
[1] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[3] FAN Yongxia, WANG Jian, ZHANG Xuezhe, WANG Jianzhong, TANG Huiping. Mechanical Property of Shell Minimal Surface Lattice Material Printed by SEBM[J]. 金属学报, 2021, 57(7): 871-879.
[4] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[5] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[6] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[8] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[9] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[10] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[11] Jinhu ZHANG,Dongsheng XU,Yunzhi WANG,Rui YANG. INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 905-915.
[12] Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 923-930.
[13] Lina ZHU,Caiyan DENG,Dongpo WANG,Shengsun HU. EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(5): 583-591.
[14] Yumin WANG, Guoxing ZHANG, Xu ZHANG, Qing YANG, Lina YANG, Rui YANG. ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES[J]. 金属学报, 2016, 52(10): 1153-1170.
[15] Mingfang WU,Fei LIU,Fengjiang WANG,Yanxin QIAO. INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT[J]. 金属学报, 2015, 51(9): 1129-1135.
No Suggested Reading articles found!