|
|
EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS |
Xianfei DING1,2,Dongfang LIU3,4,Yunrong ZHENG1,Qiang FENG1,2,3( ) |
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal, University of Science and Technology Beijing, Beijing 100083 3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 4 Melting and Casting Center, Beijing Institute of Aeronautical Materials, Beijing 100095 |
|
Cite this article:
Xianfei DING,Dongfang LIU,Yunrong ZHENG,Qiang FENG. EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS. Acta Metall Sin, 2015, 51(9): 1121-1128.
|
Abstract Casting microporosity defect is one of the important issues for as-cast HK40 alloys preparation, which is of great importance to application performance of the alloy castings. A comprehensive understanding of the mechanism on formation of the casting microporosity defect is still unclear for the alloys. In this work, the casting microporosity defect and influences of boron micro-alloying on the as-cast microstructures and microporosities in HK40 alloys castings were investigated by means of SEM, OM and XRD, etc.. The microstructures in the HK40 alloys with and without boron micro-alloying after quenching at high temperatures were also examined to check the solidification characteristic change attribute to boron addition. The results show that there are two types of casting microporosities in the castings. Type A is mainly caused by the rapid growth of dendrites and thus dendritic bridge connecting which lead to feeding shortages between the bridge dendrites. Type B is, however, resulted by the growth of M7C3 carbides in coarsened dendritic morphology which induce to the feeding channel blockage in adjacent interdendritic regions. Boron micro-alloying decreases the tendency of columnar grain formation and refines the dendrites in HK40 alloys which therefore suppresses the casting microporosity defect of type A. Additionally, boron micro-alloying not only increases the volume fraction of eutectic phases, but also changes the M7C3 carbides in dendritic morphology into the M23C6 carbides in lamellar morphology, which prevents the feeding channal blockage in adjacent interdendritic regions, thus reduces the casting microporosity defect of type B.
|
|
[1] | Whittaker M, Wilshire B, Brear J. Mater Sci Eng, 2013; A580: 391 | [2] | Navaei A, Eslami-Farsani R, Abbasi M. Int J Min Mater, 2013; 20: 354 | [3] | Kim Y, Lee D, Jeong H K, Lee Y T, Jang H. J Mater Eng Perform, 2010; 19: 700 | [4] | Sava? ?, Kayikci R. Mater Des, 2007; 28: 2224 | [5] | Li J L, Chen R S, Ma Y Q, Ke W. J Mater Sci Technol, 2014; 30: 991 | [6] | Fu H D, Zhang Z H, Wu X S, Xie J X. Intermetallics, 2013; 35: 67 | [7] | Roy S, Suwas S, Tamirisakandala S, Miracle D B, Srinivasan R. Acta Mater, 2011; 59: 5494 | [8] | Wang X P, Zheng Y R, Xiao C B, Wang B L, Han Y F. J Aeronaut Mater, 2000; 20(2): 21 (汪小平, 郑运荣, 肖程波, 王蓓蕾, 韩雅芳. 航空材料学报, 2000; 20(2): 21) | [9] | Da Silva Costa A M, Nunes C A, Baldan R, Coelho G C. J Mater Eng Perform, 2014; 23: 819 | [10] | Zhu Y X, Zhang S N, Xu L Y, Tong Y J, Ning X Z, Liu Z Z, Hou C P, Bi J. Acta Metall Sin, 1985; 21: A1 (朱耀宵, 张顺南, 徐乐英, 佟英杰, 宁秀珍, 刘泽洲, 候翠萍, 毕 敬. 金属学报, 1985; 21: A1) | [11] | Coutsouradis D, Davin A, Lamberigts M. Mater Sci Eng, 1987; 88: 11 | [12] | Song R K, Zhang M C, Du C Y, Dong J X. Rare Met Mater Eng, 2014; 43: 1628 (宋若康, 张麦仓, 杜晨阳, 董建新. 稀有金属材料与工程, 2014; 43: 1628) | [13] | Kaya A A. Mater Charact, 2002; 49: 23 | [14] | Gao Y, Yang L L, Zheng L J, Zhang H. J Beijing Univ Aeronaut Astronaut, 2010; 36: 1217 (高 永, 杨莉莉, 郑立静, 张 虎. 北京航空航天大学学报, 2010; 36: 1217) | [15] | Luan J H, Jiao Z B, Chen G, Liu C T. J Alloys Compd, 2014; 602: 235 | [16] | Yang C, Jiang H, Hu D, Huang A, Dixon M. Scr Mater, 2012; 67: 85 | [17] | Peng Y C, Jin H J, Liu J H, Li G L. Mater Sci Eng, 2011; A529: 321 | [18] | Hufenbach J, Kunze K, Giebeler L, Gemming T, Wendrock H, Baldauf C, Kühn U, Hufenbach W, Eckert J. Mater Sci Eng, 2013; A586: 267 | [19] | Li J H, Li Q, Zhang F C, Liu S, Mao L, Hu B C, Yang Z N. Mater Lett, 2015; 153: 70 | [20] | Yang C, Hu D, Huang A, Dixon M. Intermetallics, 2013; 32: 64 | [21] | Yan B C, Zhang J, Lou L H. Mater Sci Eng, 2008; A474: 39 | [22] | Qiao G W, Wang D H, Cao Z B. Acta Metall Sin, 1986; 22: A345 (乔桂文, 王德和, 曹智本. 金属学报, 1986; 22: A345) | [23] | Shahrooz N, Reza G. Mater Sci Eng, 2007; A452-453: 445 | [24] | Hu D. Intermetallics, 2001; 9: 1037 | [25] | Jiang Z G, Chen B, Ma Y C, Zhao X J, Liu K, Li Y Y. Acta Metall Sin, 2007; 43: 487 (江治国, 陈 波, 马颖澈, 赵秀娟, 刘 奎, 李依依. 金属学报, 2007; 43: 487) | [26] | Zhou X Y, Li P Y, Yang Y, Liu Y H. J Funct Mater, 2006; 37(suppl): 596 (周细应, 李培耀, 杨 愈, 刘延辉. 功能材料, 2006; 37(增刊): 596) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|