Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1121-1128    DOI: 10.11900/0412.1961.2015.00126
Current Issue | Archive | Adv Search |
EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS
Xianfei DING1,2,Dongfang LIU3,4,Yunrong ZHENG1,Qiang FENG1,2,3()
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal, University of Science and Technology Beijing, Beijing 100083
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
4 Melting and Casting Center, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

Xianfei DING,Dongfang LIU,Yunrong ZHENG,Qiang FENG. EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS. Acta Metall Sin, 2015, 51(9): 1121-1128.

Download:  HTML  PDF(9307KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Casting microporosity defect is one of the important issues for as-cast HK40 alloys preparation, which is of great importance to application performance of the alloy castings. A comprehensive understanding of the mechanism on formation of the casting microporosity defect is still unclear for the alloys. In this work, the casting microporosity defect and influences of boron micro-alloying on the as-cast microstructures and microporosities in HK40 alloys castings were investigated by means of SEM, OM and XRD, etc.. The microstructures in the HK40 alloys with and without boron micro-alloying after quenching at high temperatures were also examined to check the solidification characteristic change attribute to boron addition. The results show that there are two types of casting microporosities in the castings. Type A is mainly caused by the rapid growth of dendrites and thus dendritic bridge connecting which lead to feeding shortages between the bridge dendrites. Type B is, however, resulted by the growth of M7C3 carbides in coarsened dendritic morphology which induce to the feeding channel blockage in adjacent interdendritic regions. Boron micro-alloying decreases the tendency of columnar grain formation and refines the dendrites in HK40 alloys which therefore suppresses the casting microporosity defect of type A. Additionally, boron micro-alloying not only increases the volume fraction of eutectic phases, but also changes the M7C3 carbides in dendritic morphology into the M23C6 carbides in lamellar morphology, which prevents the feeding channal blockage in adjacent interdendritic regions, thus reduces the casting microporosity defect of type B.

Key words:  HK40 alloy      B micro-alloying      casting microporosity      boride      carbide     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00126     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1121

Alloy Cr Ni C Si Mn P S B Fe
HK40 23.29 19.23 0.35 1.34 1.41 0.025 0.004 0 Bal.
HK40-0.1B 23.96 18.90 0.38 - - - - 0.07 Bal.
HK40-0.4B 23.52 18.54 0.38 - - - - 0.36 Bal.
Table 1  Chemical compositions of as-cast HK40 series alloys
Fig.1  Typical OM image of casting microporosity in the HK40 alloy castings
Fig.2  SEM images of the casting microporosities in HK40 alloy (a), and high magnified microstructures of type A (b) and type B (c) microporosities shown in Fig.2a
Fig.3  Longitudinal OM images of the cast ingots in HK40 (a), HK40-0.1B (b) and HK40-0.4B (c) alloys
Fig.4  OM images of HK40 (a), HK40-0.1B (b) and HK40-0.4B (c) alloys
Fig.5  XRD spectra of the extract phases in as-cast HK40 and HK40-0.4B alloys
Fig.6  SEM-BSE images in interdendritic regions in the cast HK40 (a), HK40-0.1B (b) and HK40-0.4B (c) alloys
Fig.7  SEM images of the precipitated phases in interdendritic regions of the HK40 (a) and HK40-0.4B (b) alloys after phase extraction
Fig.8  OM images of quenched microstructures in HK40 (a, c, e) and HK40-0.4B (b, d, f) alloys after heated for 15 min at 1210 ℃ (a, b), 1250 ℃ (c, d) and 1290 ℃ (e, f)
[1] Whittaker M, Wilshire B, Brear J. Mater Sci Eng, 2013; A580: 391
[2] Navaei A, Eslami-Farsani R, Abbasi M. Int J Min Mater, 2013; 20: 354
[3] Kim Y, Lee D, Jeong H K, Lee Y T, Jang H. J Mater Eng Perform, 2010; 19: 700
[4] Sava? ?, Kayikci R. Mater Des, 2007; 28: 2224
[5] Li J L, Chen R S, Ma Y Q, Ke W. J Mater Sci Technol, 2014; 30: 991
[6] Fu H D, Zhang Z H, Wu X S, Xie J X. Intermetallics, 2013; 35: 67
[7] Roy S, Suwas S, Tamirisakandala S, Miracle D B, Srinivasan R. Acta Mater, 2011; 59: 5494
[8] Wang X P, Zheng Y R, Xiao C B, Wang B L, Han Y F. J Aeronaut Mater, 2000; 20(2): 21 (汪小平, 郑运荣, 肖程波, 王蓓蕾, 韩雅芳. 航空材料学报, 2000; 20(2): 21)
[9] Da Silva Costa A M, Nunes C A, Baldan R, Coelho G C. J Mater Eng Perform, 2014; 23: 819
[10] Zhu Y X, Zhang S N, Xu L Y, Tong Y J, Ning X Z, Liu Z Z, Hou C P, Bi J. Acta Metall Sin, 1985; 21: A1 (朱耀宵, 张顺南, 徐乐英, 佟英杰, 宁秀珍, 刘泽洲, 候翠萍, 毕 敬. 金属学报, 1985; 21: A1)
[11] Coutsouradis D, Davin A, Lamberigts M. Mater Sci Eng, 1987; 88: 11
[12] Song R K, Zhang M C, Du C Y, Dong J X. Rare Met Mater Eng, 2014; 43: 1628 (宋若康, 张麦仓, 杜晨阳, 董建新. 稀有金属材料与工程, 2014; 43: 1628)
[13] Kaya A A. Mater Charact, 2002; 49: 23
[14] Gao Y, Yang L L, Zheng L J, Zhang H. J Beijing Univ Aeronaut Astronaut, 2010; 36: 1217 (高 永, 杨莉莉, 郑立静, 张 虎. 北京航空航天大学学报, 2010; 36: 1217)
[15] Luan J H, Jiao Z B, Chen G, Liu C T. J Alloys Compd, 2014; 602: 235
[16] Yang C, Jiang H, Hu D, Huang A, Dixon M. Scr Mater, 2012; 67: 85
[17] Peng Y C, Jin H J, Liu J H, Li G L. Mater Sci Eng, 2011; A529: 321
[18] Hufenbach J, Kunze K, Giebeler L, Gemming T, Wendrock H, Baldauf C, Kühn U, Hufenbach W, Eckert J. Mater Sci Eng, 2013; A586: 267
[19] Li J H, Li Q, Zhang F C, Liu S, Mao L, Hu B C, Yang Z N. Mater Lett, 2015; 153: 70
[20] Yang C, Hu D, Huang A, Dixon M. Intermetallics, 2013; 32: 64
[21] Yan B C, Zhang J, Lou L H. Mater Sci Eng, 2008; A474: 39
[22] Qiao G W, Wang D H, Cao Z B. Acta Metall Sin, 1986; 22: A345 (乔桂文, 王德和, 曹智本. 金属学报, 1986; 22: A345)
[23] Shahrooz N, Reza G. Mater Sci Eng, 2007; A452-453: 445
[24] Hu D. Intermetallics, 2001; 9: 1037
[25] Jiang Z G, Chen B, Ma Y C, Zhao X J, Liu K, Li Y Y. Acta Metall Sin, 2007; 43: 487 (江治国, 陈 波, 马颖澈, 赵秀娟, 刘 奎, 李依依. 金属学报, 2007; 43: 487)
[26] Zhou X Y, Li P Y, Yang Y, Liu Y H. J Funct Mater, 2006; 37(suppl): 596 (周细应, 李培耀, 杨 愈, 刘延辉. 功能材料, 2006; 37(增刊): 596)
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[4] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[5] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[6] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[7] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[8] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[9] Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. 金属学报, 2018, 54(6): 831-843.
[10] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[11] Xirong LIU, Kai ZHANG, Shuang XIA, Wenqing LIU, Hui LI. Effects of Triple Junction and Grain Boundary Characters on the Morphology of Carbide Precipitation in Alloy 690[J]. 金属学报, 2018, 54(3): 404-410.
[12] Xiuliang MA, Xiaobing HU. High-Resolution Transmission Electron Microscopic Study of Various Borides Precipitated in Superalloys[J]. 金属学报, 2018, 54(11): 1503-1524.
[13] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[14] Bo CHEN, Xianchao HAO, Yingche MA, Xiangdong CHA, Kui LIU. Effects of Nitrogen Addition on Microstructure and Grain Boundary Microchemistry of Inconel Alloy 690[J]. 金属学报, 2017, 53(8): 983-990.
[15] Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. 金属学报, 2017, 53(5): 567-574.
No Suggested Reading articles found!