Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 85-93    DOI: 10.3724/SP.J.1037.2011.00537
论文 Current Issue | Archive | Adv Search |
EFFECTS OF HCO3- AND SO42- ON THE PITTING CORROSION BEHAVIOR OF Cu
WANG Changgang, DONG Junhua, KE Wei, CHEN Nan
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Changgang DONG Junhua KE Wei CHEN Nan. EFFECTS OF HCO3- AND SO42- ON THE PITTING CORROSION BEHAVIOR OF Cu. Acta Metall Sin, 2012, 48(1): 85-93.

Download:  PDF(3654KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  As a kind of clean, efficient and relatively safe energy, nuclear energy has been widely used around the world. The high-level radioactive waste generated in the nuclear has also become a major risk, so the disposal safety of high-level radioactive waste will be especially important. The strategy for disposal of high-level radioactive waste in China is to enclose the spent nuclear fuel in sealed metal canisters which are embedded in bentonite clay hundreds meters down in the bed-rock. The choice of container material depends largely on the redox conditions and the aqueous environment of the repository. One of the choices for the fabrication of waste canisters is Cu, because it is thermodynamically stable under the saline, anoxic conditions over the large majority of the container lifetime. For this advantage, some other countries (Canada, Sweden) have selected Cu as the material of nuclear waste container. However, in the early aerobic phase of the geological disposal the corrosion of Cu could take place, and the corrosion behavior of Cu would be influenced by the complex chemical conditions of groundwater markedly. Pitting corrosion of Cu often take place in power plants or air--conditioning condensate water. The corrosion environment usually contains HCO3-, SO42- and Cl- ions. In the early stage of geological disposal, if the aerobic water with HCO3-, SO42-and Cl- immersion repository, the pitting corrosion of Cu may occur. The content of HCO3- and SO42- in the water chemistry environment, as well as the synergy between them, could affect the behavior of pitting seriously. In this work, the cycle polarization behavior and surface morphology of pitting has been investigated in HCO3- and SO42- mixed solution, respectively by electrochemical cyclic polarization test and SEM. The results showed that the pitting corrosion behavior of Cu can be divided into the type of active dissolve and the type of film rupture; SO42- could increase Cu pitting sensitivity in both of the two types pitting corrosion. Due to synergies with the SO42-, HCO3- could increase the pitting susceptibility first and then reduce the law. In passive film rupture pitting system, SO42- could improve the ability of induce pitting; HCO3- could reduce the ability of induce pitting. There is no significant impact on pitting self--healing capacity by the two ions.
Key words:  high-level radioactive waste      Cu pitting      cyclic polarization      HCO3-      SO42-     
Received:  24 August 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51071160)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00537     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/85

[1] Wang C G, Dong J H, Ke W, Chen N. Acta Metall Sin, 2011; 47: 354

(王长罡, 董俊华, 柯伟, 陈 楠. 金属学报, 2011; 47: 354)

[2] Cheng Y L, Zhang J Q. Acta Metall Sin, 2002; 38: 74

(程英亮, 张鉴清. 金属学报, 2002; 38: 74)

[3] Liu G Q, Zhu Z Y, Ke W. Acta Metall Sin, 2001; 37: 272

(刘国强, 朱自勇, 柯 伟. 金属学报, 2001; 37: 272)

[4] Zhou X Y, Ke W, Zang Q S. Acta Metall Sin, 1990; 26: 110

(周向阳, 柯伟, 臧启山. 金属学报, 1990; 26: 110)

[5] Yan Z, Xian A P. Acta Metall Sin, 2011; 47: 1327

(颜 忠, 冼爱平. 金属学报, 2011; 47: 1327)

[6] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2011; 47: 145

(曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2011; 47: 145)

[7] Darren A L, Mallikarjuna N N. Corros Sci, 2010; 52: 1927

[8] Fujii T, Kodama T, Baba H. Corros Sci, 1984; 24: 901

[9] Drogowska M, Brossard L, M´enard H. Surf Coat Technol, 1988; 34: 383

[10] Drogowska M, Brossard L, Menard H. J Electrochem Soc, 1992; 139: 39

[11] Duthil J P, Mankowski G, Giusti A. Corros Sci, 1996; 38: 1839

[12] Reda M R, Alhajji J N. Corrosion, 1996; 3: 232

[13] Cantor A F, Park J K, Vaiyavatjamai P. J Am Water Works Association, 2003; 95(5): 112

[14] Pourbaix M. J Electrochem Soc, 1976; 123: C25

[15] Mankowski G, Duthil J P, Giusti A. Corros Sci, 1997; 39: 27

[16] Milosev I, Metikos–Hukovic M, Drogowska M, Menard H, Brassard L. J Electrochem Soc, 1992; 139: 2409

[17] Cong H, Michels H T, Scully J R. J Electrochem Soc, 2009; 156: C16

[18] Cong H, Scully J R. J Electrochem Soc, 2010; 157: C200

[19] Cong H, Scully J R. J Electrochem Soc, 2010; 157: C36

[20] Christy A G, Lowe A, Otieno–Alego V, Stoll M, Webster R D. J Appl Electrochem, 2004; 34: 225

[21] Abd El Meguid E A, Awad N K. Corros Sci, 2009; 51: 1134

[22] Cao C N. Corrosion Electrochemical Theory. 2nd Ed., Beijing: Chemical Industry Press, 2004: 287

(曹楚南. 腐蚀电化学原理. 第二版, 北京: 化学工业出版社, 2004: 287)
[1] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[2] Yunfei LU,Junhua DONG,Wei KE. EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS[J]. 金属学报, 2015, 51(9): 1067-1076.
[3] LU Yunfei, YANG Jingfeng, DONG Junhua, KE Wei. THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS[J]. 金属学报, 2015, 51(4): 440-448.
[4] XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃[J]. 金属学报, 2014, 50(6): 659-666.
[5] WEN Huailiang, DONG Junhua, KE Wei, CHEN Wenjuan, YANG Jingfeng, CHEN Nan. ACTIVE/PASSIVE BEHAVIOR OF LOW CARBON STEEL IN DEAERATED BICARBONATE SOLUTION[J]. 金属学报, 2014, 50(3): 275-284.
[6] WEI Xin, DONG Junhua, KE Wei. CREVICE CORROSION OF GRADE-2 Ti IN SIMULATED GROUNDWATER FOR GEOLOGICAL DISPOSAL OF HIGH-LEVEL RADIOACTIVE NUCLEAR WASTE[J]. 金属学报, 2013, 49(6): 675-681.
[7] WANG Changgang, DONG Junhua, KE Wei, LI Xiaofang. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF COPPER IN THE MIXED SOLUTION OF HCO3-, SO42- AND Cl-[J]. 金属学报, 2013, 49(2): 207-213.
[8] WEI Xin, DONG Junhua, TONG Jian, ZHENG Zhi,KE Wei. INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 502-507.
[9] WANG Changgang DONG Junhua KE Wei CHEN Nan LI Xiaofang. RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-[J]. 金属学报, 2012, 48(11): 1365-1373.
[10] LI Fushao AN Maozhong LIU Guangzhou DUAN Dongxia. EFFECT OF SULFATE–REDUCING BACTERIA ON THE PITTING CORROSION BEHAVIOR OF 18–8 STAINLESS STEEL[J]. 金属学报, 2009, 45(5): 536-540.
No Suggested Reading articles found!