Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 249-256    DOI: 10.11900/0412.1961.2014.00285
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW CORROSION-RESISTING NICKEL-BASED ALLOY AND 625 ALLOY DISSIMILAR METAL WELDING JOINT
ZHAO Xia1,2, ZHA Xiangdong2, LIU Yang3, ZHANG Long2, LIANG Tian2, MA Yingche2(), CHENG Leming3
1 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 ENN Science & Technology Development Co. Ltd., Langfang 065001
Cite this article: 

ZHAO Xia, ZHA Xiangdong, LIU Yang, ZHANG Long, LIANG Tian, MA Yingche, CHENG Leming. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW CORROSION-RESISTING NICKEL-BASED ALLOY AND 625 ALLOY DISSIMILAR METAL WELDING JOINT. Acta Metall Sin, 2015, 51(2): 249-256.

Download:  HTML  PDF(5875KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the fast development of industry, pollution becomes a very serious problem. The industrial and life wastewater are discharged and cause the environment pollution. Supercritical water oxidation (SCWO) becomes the most effective method to treat the wastewater. But the material used in the equipment plays a key role in restricting the application of the SCWO process. Currently, during the SCWO wastewater treatment process, 304 austenitic stainless steel, Alloy 625, P91 and P92 steels are the main preheater and reactor materials. In order to reduce the serious corrosion and improve economic efficiency of the materials for this process, a new corrosion resistant Ni-based alloy X-2# alloy has been developed with an aim of replacing the previous ones. In particular, it is highly important to the related behavior of this new alloy welding with the original SCWO. Therefore, the microstructure and mechanical properties of the welding joint of the new alloy and alloy 625 with manual argon arc welding were investigated. The microstructure and fracture morphologies of the welding joint were analyzed by OM, SEM and EDX. The micro-hardness, tensile strength and other mechanical properties were tested and analyzed. The results indicated that more isometric crystals in remelting zone to improve the welding seam strength and the microstructure in fusion zone of X-2# side did not show welding defects. However, some NbC and Laves phases formed near the fusion zone of 625 alloy sides, which affected the mechanical properties of material. Due to the influence of two thermal cycles near the remelting zone, the grains of heat affected zone (HAZ) were easy to grow. But the thermal stability of X-2# side HAZ could reach excellent level. Fine grains of 625 parent material led to grain growth seriously in HAZ, which reduced its Vickers hardness. Because of the tensile strength of welding joints of room temperature and 500 ℃ was lower than the parent materials, the welding seam could be the weakest link. The tesile fracture of X-2#/625 dissimilar metal welding joint was dimple morphology。

Key words:  X-2#/625 welding joint      welding seam      fusion zone      heat affected zone     
Received:  27 May 2014     
ZTFLH:  TG142.1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00285     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/249

Material C Si Cr Mo Al W Cu Fe Ti Nb Ni
X-2# ≤0.01 - 20.0 1.0 1.0 4.0 - 10.0 1.0 - Bal.
625 0.038 0.16 20/23 8~10 ≤0.40 - ≤0.50 ≤5.0 ≤0.40 3.0/4.2 Bal.
Table1  Chemical compositions of parent materials
Fig.1  Schematic of positions of welding joint for micro-hardness test
Fig.2  Schematic of the tensile specimen (unit: mm)
Fig.3  Microstructures of parent material of X-2#/625 dissimilar metal welding joint

(a) X-2# alloy (b) 625 alloy

Fig.4  Microstructures of welding seam (a) and welding remelting zone (b) of X-2#/625 dissimilar metal welding joint
Fig.5  OM images of fusion zone on X-2# (a) and 625 (b) sides and SEM image of precipitates of 625 side fusion zone (c) of X-2#/625 dissimilar metal welding joint
Fig.6  SEM images (a, b) and EDS analysis (c, d) of NbC (a, c) and Laves phases (b, d) on 625 side fusion zone
Fig.7  Microstructure of heat affected zone (HAZ) on X-2# (a) and 625 (b) sides of X-2#/625 dissimilar metal welding joint
Fig.8  Distribution of micro-hardness of X-2#/625 dissimilar metal welding joints
Temperature ℃ Rm / MPa η
%
X-2# 625 X-2#/625
20 715 818 671 93.8
300 637 741 605 95.0
400 615 722 577 93.8
500 597 703 535 89.7
600 560 700 498 88.9
700 557 614 475 85.4
Table 2  Mechanical properties of X-2#/625 dissimilar metal welding joints after tensile test at different temperatures
Fig.9  Macro-morphologies of X-2#/625 dissimilar metal welding joints after tensile test at different temperatures
Fig.10  Fracture morphologies of X-2#/625 dissimilar metal welding joints after tensile test at 20 ℃ (a) and 500 ℃ (b)
[1] Li F, Wang H F, Zhu D. Shanghai J Electr Power, 2002; 18(1): 19
(李锋, 汪海峰, 朱丹. 上海电力学院学报, 2002; 18(1): 19)
[2] Zhang P, Wang J C, Zhang X D, Liu X W, Xia Y J, Li Z Y. Environ Prot Sci, 2003; 119(29): 15
(张平, 王景昌, 张晓冬, 刘学武, 夏远景, 李志义. 环境保护科学, 2003; 119(29): 15)
[3] Xiang B T, Wang T. Prog Chem Ind, 1997; (3): 28
(向波涛, 王涛. 化工进展, 1997; (3): 28)
[4] Xu J C, Xu B B, Jiang Y, Rong X S, Chen Z Y. Guangzhou Chem Ind, 2013; 41(9): 10
(徐吉成, 徐滨滨, 蒋艳, 荣新山, 陈正宇. 广州化工, 2013; 41(9): 10)
[5] Ma D Z, Zhang L, Yin D, Chen G. Coal Technol, 2011; 30(1): 202
(马东祝, 张玲, 尹迪, 陈光. 煤炭技术, 2011; 30(1): 202)
[6] Kritzer P. J Supercrit Fluids, 2004; 29: 1
[7] Garcia K M, Mizia R E. In: Dan S ed., ASME Heat Transfer Division, New York: American Society of Mechanical Engineers, 1995: 299
[8] Garcia K M. In: Charles H ed., International Mechanical Engineering Congress and Exhibition, New York: American Society of Mechanical Engineers, 1996: 17
[9] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520
[10] Zhu F W, Zhang L F, Tang R, Qiao P P, Bao Y C. At Energy Sci Technol, 2010; 44(8): 979
(朱发文, 张乐福, 唐睿, 乔培鹏, 鲍一晨. 原子能科学技术, 2010; 44(8): 979)
[11] Sun Y. Master Thesis, Shanghai Jiao Tong University, 2013
(孙耀. 上海交通大学硕士学位论文, 2013)
[12] Sun C W, Hui R. Corros Sci, 2009; 51: 2508
[13] Chen Y, Sridharan K, Ukai S, Allen T R. J Nucl Mater, 2007; 371: 118
[14] Cho H S, Kimura A. J Nucl Mater, 2007; 367-370: 1180
[15] Isselin J, Kasada R, Kimura A. Corros Sci, 2010; 52: 3266
[16] Siwy A D, Clark T E, Motta A T. J Nucl Mater, 2009; 392: 280
[17] Was G S, Ampornrat P, Gupta G, Teysseyrea S, Westa E A, Allenb T R, Sridharanb K, Tanb L, Chenb Y, Renb X, Pister C. J Nucl Mater, 2007; 371: 176
[18] Wright L G, Dooley R B. Int Mater Rev, 2010; 55(3) :129
[19] Zhu F W, Zhang L F, Tang R, Qiao P P, Liu R Q. At Energy Sci Technol, 2009; 43(6): 39
(朱发文, 张乐福, 唐睿, 乔培鹏, 刘瑞芹. 原子能科学技术, 2009; 43(6): 39)
[20] Was G S, Teysseyre S, Jiao Z. Corrosion, 2006; 62: 989
[21] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996
[22] Halvarsson M, Tang J E, Asteman H. Corros Sci, 2006; 48: 2014
[23] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 3056
[24] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[25] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F. Corros Sci, 2009; 51: 2092
[26] Zhang Q, Tang R, Li C, Luo X, Yin K J. Nucl Eng Technol, 2009; 41(1): 107
[27] Li L. Master Thesis, Shanghai Jiao Tong University, 2012
(李力. 上海交通大学硕士学位论文, 2012)
[28] Bao Y C. Master Thesis, Shanghai Jiao Tong University, 2011
(鲍一晨. 上海交通大学硕士学位论文, 2011)
[29] Cieslak M J. Weld J, 1991; 70(2): 49
[30] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys. Hoboken: John Wiley & Sons Inc, 2009: 47
[1] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[2] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[3] Teng GUO, Hongtao LI, Bailing JIANG, Yibin XING, Xinyu ZHANG. Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings[J]. 金属学报, 2018, 54(3): 463-469.
[4] Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed[J]. 金属学报, 2018, 54(3): 419-427.
[5] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[6] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[7] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[8] ZHOU Feng, ZHAO Xia, ZHA Xiangdong, MA Yingche, LIU Kui. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE WELDING JOINT OF A NEW CORROSION- RESISTING NICKEL-BASED ALLOY AND 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2014, 50(11): 1335-1342.
[9] ZHAO Xia, LIU Yang, ZHA Xiangdong, CHENG Leming, MA Yingche, LIU Kui. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF WELDING JOINT OF A NEW CORROSION RESISTANT Ni-BASED ALLOY[J]. 金属学报, 2014, 50(11): 1377-1383.
[10] YANG Chenggong, SHAN Jiguo, REN Jialie. STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT[J]. 金属学报, 2012, 48(5): 513-518.
[11] LAN Liangyun QIU Chunlin ZHAO Dewen LI Canming GAO Xiuhua DU Linxiu. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL[J]. 金属学报, 2011, 47(8): 1046-1054.
[12] SHU Wei WANG Xuemin LI Shurui HE Xinlai. INFLUENCE OF SECOND–PHASE PARTICLES CONTAINING Ti ON MICROSTRUCTURE AND PROPERTIES OF WELD–HEAT–AFFECTED–ZONE OF A MICROALLOY STEEL[J]. 金属学报, 2010, 46(8): 997-1003.
[13] ZHOU Chengshuang ZHENG Shuqi CHEN Changfeng. STRESS ORIENTED HYDROGEN INDUCED CRACKING BEHAVIOR OF HEAT AFFECTED ZONE OF L360MCS STEEL IN WET H2S ENVIRONMENT[J]. 金属学报, 2010, 46(5): 547-553.
[14] TAN WeiTAN Way; XU Binshi; HAN Wenzheng; FENG Shaowu; FENG Jianlin; ZHONG Qunpeng. HAZ Corrosion of 22SiMn2TiB Ultra-Strength Steel Weldment in 3.5%NaCl Solution[J]. 金属学报, 2004, 40(2): 197-201 .
[15] ZHU Yuru; GUO Shuqiang; XU Jianlun; JIANG Guochang (Shanghai Enhanced Laboratory of Ferrometallurgy; Shanghai University; Shanghai 200072); YU Diwei;PAN Liying; WANG Yueqiang (Institule of Iron & Steel; Baoshan Iron & Steel Corporatton; Shanghai 201900)(Manuscript received 1995-10-20; in revised form 1996-02-08). FORMATION OF INTRAGRANULAR FERRITE PLATES AND THEIR EFFECT ON HEAT AFFECTED ZONE OF STEEL X-60[J]. 金属学报, 1996, 32(8): 891-89.
No Suggested Reading articles found!