Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1335-1342    DOI: 10.11900/0412.1961.2014.00284
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE WELDING JOINT OF A NEW CORROSION- RESISTING NICKEL-BASED ALLOY AND 304 AUSTENITIC STAINLESS STEEL
ZHOU Feng1,2, ZHAO Xia1,2, ZHA Xiangdong2, MA Yingche2(), LIU Kui2
1 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHOU Feng, ZHAO Xia, ZHA Xiangdong, MA Yingche, LIU Kui. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE WELDING JOINT OF A NEW CORROSION- RESISTING NICKEL-BASED ALLOY AND 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2014, 50(11): 1335-1342.

Download:  HTML  PDF(9034KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the fast development of industry, a serious global problem, pollution, becomes more apparent. A large number of wastewater is discharged, causing the environment pollution. Supercritical water oxidation (SCWO) becomes the most effective method to treat the wastewater within recent years, but the material used in the equipment plays a key role in restricting the application of the SCWO process. Currently, during the SCWO wastewater treatment process, 304 austenitic stainless steel, alloy 625, P91 and P92 steels are the mainly preheater and reactor materials. In order to reduce the serious corrosion and improve economic efficiency of the materials for this process, a new corrosion resistant Ni-based alloy (called X-2# alloy) has been developed with an aim of replacing the previous ones. In particular, it is highly important to the related behavior of this new alloy welding with the original SCWO. Therefore, the microstructure and mechanical properties of the welding joint of the new alloy and 304 austenitic stainless steel with manual argon arc welding were investigated. The microstructure and fracture morphologies of the welding joint were analyzed through OM, SEM and EDS, and the detailed analysis of the micro-hardness, tensile strength and other mechanical properties were performed. The results demonstrated that the parent material with the typical 40~65 mm grains size is helpful for dissimilar steel welding, and the microstructure in fusion zone of X-2# side does not show welding defects. However, some ferrites are further formed near the fusion zone of 304 stainless steel sides. There are Cr-rich and Ni-poor distributions in the ferrites. The grain grows seriously in both the areas near the remelt zone and 304 stainless steel side of heat affected zones (HAZs), which affect heavily the performance of welding joint. In addition, the results also uncover that the Vickers-hardness is the minimum in the HAZ. At room temperature, the fracture location of the tensile tests of X-2#/304 is in the welding seam, whereas at 500 ℃ the corresponding position is in the 304 matrix. Due to the strengthening effects of Al, W and Mo elements, the high temperature mechanical properties of X-2# alloy have been found to be even better than those of the 304 austenitic stainless steel.

Key words:  X-2#/304 welding joint      welding seam      fusion zone      heat affected zone     
Received:  06 August 2014     
ZTFLH:  TG142.1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00284     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1335

Material C Si P S Cr Mo Al W Ti Mn Fe Ni
X-2# ≤0.01 - - - 20.0 1.0 1.0 4.0 1.0 - 10.0 Bal.
304 ≤0.08 ≤1.0 ≤0.045 ≤0.03 18~20 - - - - ≤2.0 Bal. 8~10.5
Table 1  Chemical compositions of parent materials(mass fraction / %)
Fig.1  Position of welding joint for micro-hardness test
Fig.2  Geometry of the tensile specimen (unit: mm)
Fig.3  OM image of X-2#/304 dissimilar metal welding joint
Fig.4  OM images of parent materials

(a) X-2# alloy

(b) 304 austenitic stainless steel

Fig.5  OM images of X-2#/304 welding seam (a) and X-2#/304 welding remelting zone (b)
Fig.6  OM images of X-2# side (a) and 304 side (b) fusion zones on X-2#/304 welding joint
Fig.7  SEM images of precipitation (a) and matrix (b) on 304 side fusion zone, and corresponding EDS (c, d)
Fig.8  OM images of X-2# side (a) and 304 side (b) heat affected zone (HAZ) on X-2#/304 welding joint
Phase Atomic fraction / % Mass fraction / %
Cr Fe Ni Cr Fe Ni
Matrix 20.41 69.23 9.01 19.19 69.91 9.56
Precipitation 25.79 67.93 5.19 24.38 68.98 5.54
Table 2  Comparison of precipitates and matrix elements
Fig.9  Distributions of micro-hardness of welding joints

(a) positive welding seam (b) negative welding seam

(c) welding remelting zone (d) central of welding seam

Fig.10  Fracture locations of welding joints under different temperatures
Fig.11  Macro-(a, b) and micro-(c, d) structures of tensile fracture of X-2#/304 welding joint under 20 ℃ (a, c) and 500 ℃ (b, d)
Temperature
Rm / MPa η
%
X-2# alloy 304 stainless steel X-2#/304
20 715 695 642 92.4
300 637 467 439 94.1
400 615 428 417 97.4
500 597 398 402 101.0
600 560 345 344 99.6
700 557 239 256 107.1
Table 3  Tensile properties under different temperatures
[1] Yang R T, Wang Z F, Zhang H F, Cheng L M, Bi J C. Surf Technol, 2007; 36(5): 84
(杨润田, 王志锋, 张海峰, 程乐明, 毕继诚. 表面技术, 2007; 36(5): 84)
[2] Zhu F W, Zhang L F, Qiao P P, Liu R Q, Bao Y C, Chen Y Q. Nucl Power Eng, 2009; 30(5): 62
(朱发文, 张乐福, 乔培鹏, 刘瑞芹, 鲍一晨, 陈宇清. 核动力工程, 2009; 30(5): 62)
[3] Han E H. Corros Sci Prot Technol, 1999; 11: 53
(韩恩厚. 腐蚀科学与防护技术, 1999; 11: 53)
[4] Chen Y, Sridharan K, Allen T R. Corros Sci, 2006; 48: 2843
[5] Chen Y, Sridharan K, Allen T R, Ukai S. J Nucl Mater, 2006; 359: 50
[6] Gupta G, Ampornrat P, Ren X, Sridharan K, Allen T R, Was G S. J Nucl Mater, 2007; 361: 160
[7] Cho H S, Kimura A, Ukai S, Fujiwara M. J Nucl Mater, 2004; 329: 387
[8] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520
[9] Zhu F W, Zhang L F, Tang R, Qiao P P, Bao Y C. At Energ Sci Technol, 2010; 44: 979
(朱发文, 张乐福, 唐 睿, 乔培鹏, 鲍一晨. 原子能科学技术, 2010; 44: 979)
[10] Sun Y. Master Thesis, Shanghai Jiao Tong University, 2013
(孙 耀. 上海交通大学硕士学位论文, 2013)
[11] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X. J Nucl Mater, 2007; 371: 176
[12] Wright L G, Dooley R B. Int Mater Rev, 2010; 55: 129
[13] Zhu F W, Zhang L F, Tang R, Qiao P P, Liu R Q. At Energ Sci Technol, 2009; 43: 39
(朱发文, 张乐福, 唐 睿, 乔培鹏, 刘瑞芹. 原子能科学技术, 2009; 43: 39)
[14] Was G S, Teysseyre S, Jiao Z. Corrosion, 2006; 62: 989
[15] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996
[16] Halvarsson M, Tang J E, Asteman H, Svensson J E, Johansson L G. Corros Sci, 2006; 48: 2014
[17] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 3056
[18] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[19] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F. Corros Sci, 2009; 51: 2092
[20] Zhang Q, Tang R, Li C, Luo X, Long C S, Yin K J. Nucl Eng Technol, 2009; 41: 107
[21] Li L. Master Thesis, Shanghai Jiao Tong University, 2012
(李 力. 上海交通大学硕士学位论文, 2012)
[22] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X, Pister C. J Nucl Mater, 2007; 371: 176
[23] Bao Y C. Master Thesis, Shanghai Jiao Tong University, 2011
(鲍一晨. 上海交通大学硕士学位论文, 2011)
[24] Chen B Q, Pan C X, Zhang Z H. J Wuhan Transp Univ, 1995; 19(1): 1
(陈冰泉, 潘春旭, 张志慧. 武汉交通科技大学学报, 1995; 19(1): 1)
[25] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel Base Alloys. Hoboken: John Wiley & Sons, Inc, 2009: 47
[26] Zhao B H,He L,Yao Y M. Welding Processing Technology and Quality Testing, Failure Analysis and Metallograph Practical Handbook. Beijing: Metallurgical Industry Press, 2006: 1203
(赵炳辉,何 伦,姚一鸣. 焊接件加工处理工艺与质量检测、失效分析技术及金相图谱实用手册. 北京: 冶金工业出版社, 2006: 1203)
[1] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[2] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[3] Teng GUO, Hongtao LI, Bailing JIANG, Yibin XING, Xinyu ZHANG. Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings[J]. 金属学报, 2018, 54(3): 463-469.
[4] Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed[J]. 金属学报, 2018, 54(3): 419-427.
[5] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[6] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[7] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[8] ZHAO Xia, ZHA Xiangdong, LIU Yang, ZHANG Long, LIANG Tian, MA Yingche, CHENG Leming. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW CORROSION-RESISTING NICKEL-BASED ALLOY AND 625 ALLOY DISSIMILAR METAL WELDING JOINT[J]. 金属学报, 2015, 51(2): 249-256.
[9] ZHAO Xia, LIU Yang, ZHA Xiangdong, CHENG Leming, MA Yingche, LIU Kui. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF WELDING JOINT OF A NEW CORROSION RESISTANT Ni-BASED ALLOY[J]. 金属学报, 2014, 50(11): 1377-1383.
[10] YANG Chenggong, SHAN Jiguo, REN Jialie. STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT[J]. 金属学报, 2012, 48(5): 513-518.
[11] LAN Liangyun QIU Chunlin ZHAO Dewen LI Canming GAO Xiuhua DU Linxiu. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL[J]. 金属学报, 2011, 47(8): 1046-1054.
[12] SHU Wei WANG Xuemin LI Shurui HE Xinlai. INFLUENCE OF SECOND–PHASE PARTICLES CONTAINING Ti ON MICROSTRUCTURE AND PROPERTIES OF WELD–HEAT–AFFECTED–ZONE OF A MICROALLOY STEEL[J]. 金属学报, 2010, 46(8): 997-1003.
[13] ZHOU Chengshuang ZHENG Shuqi CHEN Changfeng. STRESS ORIENTED HYDROGEN INDUCED CRACKING BEHAVIOR OF HEAT AFFECTED ZONE OF L360MCS STEEL IN WET H2S ENVIRONMENT[J]. 金属学报, 2010, 46(5): 547-553.
[14] TAN WeiTAN Way; XU Binshi; HAN Wenzheng; FENG Shaowu; FENG Jianlin; ZHONG Qunpeng. HAZ Corrosion of 22SiMn2TiB Ultra-Strength Steel Weldment in 3.5%NaCl Solution[J]. 金属学报, 2004, 40(2): 197-201 .
[15] ZHU Yuru; GUO Shuqiang; XU Jianlun; JIANG Guochang (Shanghai Enhanced Laboratory of Ferrometallurgy; Shanghai University; Shanghai 200072); YU Diwei;PAN Liying; WANG Yueqiang (Institule of Iron & Steel; Baoshan Iron & Steel Corporatton; Shanghai 201900)(Manuscript received 1995-10-20; in revised form 1996-02-08). FORMATION OF INTRAGRANULAR FERRITE PLATES AND THEIR EFFECT ON HEAT AFFECTED ZONE OF STEEL X-60[J]. 金属学报, 1996, 32(8): 891-89.
No Suggested Reading articles found!