Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 930-936    DOI: 10.11900/0412.1961.2013.00771
Current Issue | Archive | Adv Search |
THERMODYNAMICAL AND KINETIC INVESTIGA-TION OF FORMATION OF PERIODIC LAYERED STRUCTURE IN TiCu/Zn INTERFACE REACTION
WU Changjun1,2, ZHU Chenlu1, SU Xuping1,2(), LIU Ya1,2, PENG Haoping3, WANG Jianhua1,2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
2 Jiangsu Key Laboratory of Materials Surface Technology, Changzhou 213164
3 School of Petroleum Engineering, Changzhou University, Changzhou 213164
Cite this article: 

WU Changjun, ZHU Chenlu, SU Xuping, LIU Ya, PENG Haoping, WANG Jianhua. THERMODYNAMICAL AND KINETIC INVESTIGA-TION OF FORMATION OF PERIODIC LAYERED STRUCTURE IN TiCu/Zn INTERFACE REACTION. Acta Metall Sin, 2014, 50(8): 930-936.

Download:  HTML  PDF(3809KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

研究了TiCu/Zn扩散偶在390和450 ℃退火后的扩散层组织, 发现其扩散区域中形成了3类周期层片对, 且γ+TiZn3层片对的厚度随温度升高而减小, 但与退火时间无关. 在TiCu/Zn扩散体系中, 反应扩散主要受Zn原子向TiCu基体端扩散控制, Zn原子扩散至TiCu基体界面附近优先形成TiZn3, 而Ti原子穿过γ层和Cu原子穿过TiZn3层向富Zn端长程扩散均很困难, Cu原子仅能通过短程扩散聚集形成γ相并长大. 周而复始, 扩散通道在γ+TiZn3两相区中来回振荡形成周期层片对, 且其间距与形成的先后顺序无关. 温度的升高加快了原子扩散和TiZn3层的形成, 使层片对变薄. 扩散通道往富Zn方向穿过三相区后, 在经过ε+TiZn3ε+Ti3Zn22两相区时, 同样由于Ti和Cu原子长程扩散困难, 形成ε+TiZn3ε+Ti3Zn22周期层片对.

Key words:  TiCu/Zn      diffusion couple      periodic layer structure      thermodynamics      kinetics     
Received:  27 November 2013     
ZTFLH:  TG111.6  
Fund: Supported by National Natural Science Foundation of China (Nos.51171031 and 51201023)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00771     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/930

Fig.1  SEM-BSE images of diffusion region in TiCu/Zn diffusion couple after annealing at 390 ℃ for 24 h
Fig.2  Microstructures in the boundary of γ+TiZn3 layers and ε+TiZn3 layers (a) and ε+TiZn3 layers and ε+Ti3Zn22 layers (b) in TiCu/Zn diffusion couple after annealing at 390 ℃ for 24 h
Fig.3  SEM-BSE image of diffusion region in TiCu/Zn diffusion couple after annealing at 450 ℃ for 2 h
Position Phase Ti Cu Zn
1 TiZn3 21.8 6.1 72.1
2 Two phases 10.5 20.8 68.7
3 TiZn3 22.8 3.3 73.9
4 γ 6.5 25.7 67.8
5 TiZn3 22.8 3.1 74.1
6 γ 6.2 26.1 67.7
7 TiZn3 21.8 2.7 75.5
8 Transition layer 4.5 18.0 77.5
9 Transition layer 19.3 2.0 78.7
10 Ti3Zn22 11.8 2.3 85.9
11 t 5.0 11.9 83.1
12 Ti3Zn22 11.2 2.0 86.8
13 t 4.3 8.5 87.2
Table 1  Chemical compositions of the noted layers in TiCu/Zn diffusion couple after annealing at 450 ℃ for 2 h corresponding to the positions in Fig. 3
Fig.4  Calculated formation enthalpy (DHf) of Ti-Zn alloys and Cu-Zn alloys at 390 and 450 ℃
Fig.5  Zn-rich corner of Zn-Cu-Ti system at 450 ℃ and the diffusion path in TiCu/Zn diffusion couple at 450 ℃ (The dotted line connects the TiCu substrate and the liquid Zn phase)
[1] He M, Su X P, Yin F C, Wang J H, Li Z. Scr Mater, 2008; 59: 411
[2] Osinski K, Vriend A W, Bastin F, Loo F. Z Metallkd, 1982; 73: 258
[3] Su X P, Liu C, Yin F C, Wang J H. Scr Mater, 2010; 62: 485
[4] Andersson J,Höglund L,Jönsson B,Agren J,Purdy G. Fundamentals and Applications of Ternary Diffusion. New York: Pergamon Press, 1990: 153
[5] Dunaev S F, Zverkov S A. J Less Common Met, 1989; 153: 143
[6] Schiepers R C J, Van Beek J A, Van Loo F J J, De With G. J Eur Ceram Soc, 1993; 11: 211
[7] Rijnders M R, Kodentsov A A, Van Beek J A, Van Den Akker J, Van Loo F J J. Solid State Ionics, 1997; 95: 51
[8] Gutman I, Klinger L, Gotman I, Shapiro M. Scr Mater, 2001; 45: 363
[9] Rijnders M R, Van Beek J A, Kodentsov A A, Van Loo F J J. Z Metallkd, 1996; 87: 732
[10] Effenberg G, Ilyenko S. Non-Ferrous Metal Systems. Berlin: Springer Berlin Heidelberg, 2007: 451
[11] Chen Y C, Zhang X F, Han L, Du Z W. Mater Lett, 2012; 76: 151
[12] Kodentsov A A, Rijnders M R, Van Loo F J J. Acta Mater, 1998; 46: 6521
[13] Osinski K. PhD Dissertation, Eindhoven University of Technology, 1983
[14] Kao C R, Chang Y A. Acta Metall Mater, 1993; 41: 3463
[15] Kirkaldy J S, Young D J. Diffusion in the Condensed State. London: Institute of Metals London, 1987: 387
[16] Kumar K C H, Ansara I, Wollants P, Delaey L. Z Metallkd, 1996; 87: 666
[17] Gierlotka W, Chen S W. J Mater Res, 2008; 23: 258
[18] Chen X A, Jeitschko W, Danebrock M E, Evers C B H, Wagner K. J Solid State Chem, 1995; 118: 219
[19] Soares D, Vilarinho C, Castro F. Scand J Metall, 2001; 30: 254
[20] Heine W, Zweicker U. Z Metallkd, 1962; 53: 386
[21] Chen Y C, Zhang X F, Ren Y K, Han L, Lin D Y, Wang Q P. Intermetallics, 2013; 36: 8
[22] Zhang X, Chena Y, Fan X, Hao G. Procedia Eng, 2012; 27: 1707
[23] Zhang X F. Master Thesis, Shandong University of Science and Technology, Jinan, 2011
(张喜凤. 山东科技大学硕士学位论文, 济南, 2011)
[24] Chen Y C, Xu J, Fan X H, Zhang X F, Han L, Lin D Y, Li Q H, Uher C. Intermetallics, 2009; 17: 920
[25] Chen Y C, Qi L, Zhang Y G, Chen C Q. J Beijing Univ (Nat Sci), 2006; 42: 168
(陈永翀, 其 鲁, 张永刚, 陈昌麒. 北京大学学报(自然科学版), 2006; 42: 168)
[26] Chen Y C, Li Z H, Qi L, Zhang Y G, Chen C Q. Acta Metall Sin, 2006; 42: 225
(陈永翀, 黎振华, 其 鲁, 张永刚, 陈昌麒. 金属学报, 2006; 42: 225)
[27] Chen Y C, Qi L, Zhang Y G, Chen C Q. Acta Metall Sin, 2005; 41: 235
(陈永翀, 其 鲁, 张永刚, 陈昌麒. 金属学报, 2005; 41: 235)
[28] Chen Y C, Zhang Y G, Chen C Q. Mater Sci Eng, 2003; A362: 135
[29] Su X P, Li Z, Yin F C, He Y H, Pan S W. Acta Metall Sin, 2008; 44: 718
(苏旭平, 李 智, 尹付成, 贺跃辉, 潘世文. 金属学报, 2008; 44: 718)
[30] Doi K, Ono S, Ohtani H, Hasebe M. J Phase Equilib Diff, 2006; 27: 63
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[7] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[8] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[9] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[10] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[11] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[12] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[13] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[14] Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. 金属学报, 2018, 54(8): 1187-1192.
[15] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
No Suggested Reading articles found!