Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 871-878    DOI: 10.3724/SP.J.1037.2013.00801
Current Issue | Archive | Adv Search |
ANALYSIS ON THE CONSTITUTIVE RELATIONSHIP OF TC18 TITANIUM ALLOY BASED ON THE SOFTENING MECHANISM
LIANG Houquan, GUO Hongzhen(), NING Yongquan, YAO Zekun, ZHAO Zhanglong
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi′an 710072
Cite this article: 

LIANG Houquan, GUO Hongzhen, NING Yongquan, YAO Zekun, ZHAO Zhanglong. ANALYSIS ON THE CONSTITUTIVE RELATIONSHIP OF TC18 TITANIUM ALLOY BASED ON THE SOFTENING MECHANISM. Acta Metall Sin, 2014, 50(7): 871-878.

Download:  HTML  PDF(1580KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The true stress-true strain curves have been attained through the isothermal compression experiment of TC18 titanium alloy. The influence of deformation parameters on the shape of stress-strain curves and peak stress has been analyzed through the working-hardening and dynamic softening effects. The true stress-true strain curves show the similar characteristics under different deformation conditions. However, the peak stress is sensitive to the changes of deformation parameters. The type of dynamic softening mechanisms in hot deformation under certain conditions can be obtained through Poliak-Jonas criterion. The dynamic recrystallization process tends to take place during the deformation with lower strain rates. And the choice of the dynamic softening mechanisms is not sensitive to deformation temperatures. The suitable constitutive models under different softening mechanisms have been constructed based on the traditional Arrhenius equations. With the identification of the dynamic softening mechanisms in hot deformation of TC18 alloy with different conditions, the response of true stress, at strain of 0.7, to the deformation temperatures and strain rates can be described through the proposed models. And the sensitivity coefficient of strain rates and deformation activation energy, of the process with the dynamic recrystallization as the major softening mechanism, are much larger than the ones of process with dynamic recovery.

Key words:  TC18 titanium alloy      softening mechanism      constitutive model      high-temperature deformation     
Received:  09 December 2013     
ZTFLH:  TG301  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00801     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/871

Fig.1  True stress-true strain (s-e) curves in the isothermal compression of TC18 titanium alloy at 1093 K (a) and 1153 K (b)
Fig.2  Effects of the strain rate ln ε? (a) and the deformation temperature T (b) on the peak stress σp of TC18 titanium alloy
Fig.3  -?θ/?σ - lnσ curves of TC18 titanium alloy at 1093 K (a) and 1153 K (b) with different strain rates
Fig.4  Microstructures of TC18 titanium alloy deformed at 1093 K with ε ˙ = = 0.001 s-1 (a) and 0.1 s-1(b)
Fig.5  Curves of lnε?- σV(a), σV- 1000/T (b), lnZ - σV(c) and calculated value vs experimental result (d)
Fig.6  Curves of lnε?- lnσE (a), lnσE - 1000/T (b), lnZ - lnσE (c) and calculated value vs experimental result (d)
[1] Moiseyer V N. Titanium Alloys-Russian Aircraft and Aerospace Applications. London: Taylor & Francis Group, 2005: 46
[2] Semiatin S L, Seetharaman V, Weiss I. Mater Sci Eng, 1999; A263: 257
[3] Bruschi S, Poggio S, Quadrini F. Mater Lett, 2004; 58: 3622
[4] Sumantra M, Rakesh V, Sivaprasad P V. Mater Sci Eng, 2007; A500: 114
[5] Cui J H, Yang H, Sun Z C. Rare Metall Mater Eng, 2012; 41: 0397
[6] Li X L. PhD Dissertation, Northwestern Polytechnical University, Xi′an, 2005
(李晓丽. 西北工业大学博士学位论文, 西安, 2005)
[7] Sha W, Savko M. Titanium Alloys: Modelling of Microstructure, Properties and Applications. Cambridge: Woodhead Publishing, 2009: 265
[8] Jia B, Peng Y. Acta Metall Sin, 2011; 47: 507
(贾 斌, 彭 艳. 金属学报, 2011; 47: 507)
[9] Zhang W F, Li X L, Sha W, Yan W, Wang W, Shan Y Y, Yang K. Mater Sci Eng, 2014; A590: 199
[10] Roberts W, Ahlblom B. Acta Metall, 1978; 26: 801
[11] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier, 2004: 431
[12] Wang B, Guo H Z, Yao Z K. Forg Stamp Technol, 2006; (6): 106
(王 斌, 郭鸿镇, 姚泽坤. 锻压技术, 2006; (6): 106)
[13] Ouyang D L, Lu S Q, Cui X. J Aero Mater, 2010; 30(2): 17
(欧阳德来, 鲁世强, 崔 霞. 航空材料学报, 2010; 30(2): 17)
[14] Fernández A I, Uranga P, López B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 367
[15] Taylor A S, Hodgson P D. Mater Sci Eng, 2011; A528: 3310
[16] McQueen H J, Sue Y, Ryan N D, Fry E J. Mater Process Technol, 1995; 53: 293
[17] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127
[18] Miura H, Sakai T, Mogawa R, Gottstein G. Scr Mater, 2004; 51: 671
[19] Chen X R, Li H X, Ge M Q, Chen Y H, Hu Y S. Acta Metall Sin, 1997; 33: 1275
(程晓茹, 李虎兴, 葛懋琦, 陈贻宏, 胡衍生. 金属学报, 1997; 33: 1275)
[20] Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Scr Mater, 2014; 72-73: 1
[21] Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 731
[22] Gottstein G, Kocks U F. Acta Meter, 1983; 31: 175
[23] Mahoney M W. Materials Properties Handbook: Titanium Alloys. Materials Park: ASM International, 1994: 154
[24] Gottstein G,Shvindlerman L S. Grain Boundary Migration in Metals. Boca Raton: CRC Press, 2010: 211
[25] Mao P L, Yang K, Su G Y. Acta Metall Sin, 2001; 37: 40
(毛萍莉, 杨 柯, 苏国跃. 金属学报, 2001; 37: 40)
[26] Sellars C M, Whiteman J A. Acta Meter, 1979; 13: 187
[27] Sargent P M, Ashby M F. Scr Mater, 1982; 16: 1415
[1] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[2] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[3] Zhipeng WAN, Tao WANG, Yu SUN, Lianxi HU, Zhao LI, Peihuan LI, Yong ZHANG. Dynamic Softening Mechanisms of GH4720Li AlloyDuring Hot Deformation[J]. 金属学报, 2019, 55(2): 213-222.
[4] Binshan YU,Sheliang WANG,Tao YANG,Yujiang FAN. BP Neural Netwok Constitutive Model Based on Optimization with Genetic Algorithm for SMA[J]. 金属学报, 2017, 53(2): 248-256.
[5] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
[6] SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY[J]. 金属学报, 2014, 50(9): 1115-1122.
[7] ZHANG Jin, DENG Yunlai, YANG Jinlong, ZHANG Xinming. EXPERIMENTAL STUDIES AND CONSTITUTIVE MODELING FOR CREEP AGING OF 2124 Al ALLOY[J]. 金属学报, 2013, 49(3): 379-384.
[8] ZHU Yiguo, ZHANG Yang, ZHAO Dan. MICROMECHANICAL CONSTITUTIVE MODEL FOR PHASE TRANSFORMATION OF NiTi POLYCRYSTAL SMA
 
[J]. 金属学报, 2013, 49(1): 123-128.
[9] JIA Bin PENG Yan. CONSTITUTIVE RELATIONSHIPS OF Nb MICROALLOYED STEEL DURING HIGH TEMPERATURE DEFORMATION[J]. 金属学报, 2011, 47(4): 507-512.
[10] HAN Zhiqiang ZHU Wei LIU Baicheng. THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology[J]. 金属学报, 2009, 45(3): 356-362.
[11] WeiGuo Guo. Plastic low stress and physically based constitutive model of four newer naval vessel steels[J]. 金属学报, 2006, 42(5): 463-468 .
No Suggested Reading articles found!