|
|
UPCONVERSION WHITE PHOTOLUMINESCENCE AND FERROELECTRIC PROPERTY FOR Er3+-Tm3+- Yb3+ TRI-CODOPED Bi4Ti3O12 THIN FILM |
SUN Lina1( ), TAN Jun2,3, BA Dechun1, YUAN Peixin1 |
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 2 College of Sciences, Northeastern University, Shenyang 110819 3 Research Institute, Northeastern University, Shenyang 110819 |
|
Cite this article:
SUN Lina, TAN Jun, BA Dechun, YUAN Peixin. UPCONVERSION WHITE PHOTOLUMINESCENCE AND FERROELECTRIC PROPERTY FOR Er3+-Tm3+- Yb3+ TRI-CODOPED Bi4Ti3O12 THIN FILM. Acta Metall Sin, 2014, 50(1): 88-94.
|
Abstract The Er3+-Tm3+-Yb3+ tri-codoped Bi4Ti3O12 thin films were prepared by chemical solution deposition method and its upconversion (UC) photoluminescence and ferroelectric properties were studied. There are four emission bands in the visible UC luminescence spectra excited by 980 nm infrared light at room temperature. The 478 nm blue emission band corresponds to 1G4 → 3H6 transition of Tm3+, and the 527, 548 nm green emission bands correspond to 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+, and the 657 nm red emission band corresponds to 4F9/2 → 4I15/2 transition of Er3+ and 1G4 → 3F4 transition of Tm3+. The fluorescent color can be tuned by adjusting Er3+, Tm3+ and Yb3+ concentrations. For Bi3.59-xErxTm0.01Yb0.4Ti3O12 (BErxTYT) thin films with fixed Tm3+ and Yb3+ concentrations, the intensity ratio of green and red emissions to blue one gradually increased with the increase of Er3+ concentrations, and the quenching concentration of Er3+ is only about 1.75‰ (mole fraction). For Bi3.593-yEr0.007TmyYb0.4Ti3O12 (BETmyYT) thin films with fixed Er3+ and Yb3+ concentrations, the intensity ratio of green and red emissions to blue one decreased with the increase of Tm3+ concentrations, and Tm3+ quenching concentration is about 2.5‰. For Bi3.98-zEr0.01Tm0.01YbzTi3O12 (BETYbzT) thin films with fixed Er3+ and Tm3+ concentrations, the intensity ratio of blue or red emission to green one increase with increase of Yb3+ concentrations, and Yb3+ quenching concentration is less than 5 mol% for the luminescence from Er3+ and lager than 18 mol% for the luminescence from Tm3+. The optimal color coordinate in these films is (0.31, 0.34), close to standard white-light coordinate of (0.33, 0.33), which appears in Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12 thin film. The color coordinate has only a little change with increasing pumping power, which suggests that luminescence from the thin films has good color stability. There exist significant energy transfers from Er3+ to Tm3+, which will affect the relative intensities of blue, green and red emissions and their quenching concentrations by analyzing the UC emission mechanism of the thin films. The remnant polarization value of the film prepared on Pt/Ti/SiO2/Si substrate reaches the maximum and is equal to 27.8 μC/cm2 when the total codoping concentration of Er3+, Tm3+ and Yb3+ is about 10% (Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12 film).
|
Received: 20 August 2013
|
|
Fund: Supported by Programs for Science and Technology Development of Liaoning Province(No.2012216033), Fundamental Research Funds for the Central Universities (No.N120403013), Programs for Science and Technology Development of Shenyang(No.F11-174-9-00) and Science and Technology Plan Project of Shenyang (No.F12-277-1-60) |
[1] |
Hou X R, Zhou S M, Jia T T, Lin H, Teng H.J Alloys Compd, 2011; 509: 2793
|
[2] |
Chen D Q, Wang Y S, Zheng K L, Guo T L, Yu Y L, Huang P.Appl Phys Lett, 2007; 91: 251903
|
[3] |
Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G.Nat Mater, 2011; 10 : 968
|
[4] |
Sivakumar S, Van Veggel F C, Raudsepp M.J Am Chem Soc, 2005; 127: 12464
|
[5] |
Van der Ende B M, Aarts L, Meijerink A.Phys Chem Chem Phys, 2009; 11: 11081
|
[6] |
Wang D Y, Yin M, Xia S D, Makhov V N, Khaidukov N M, Krupa J C.J Alloys Compd, 2004; 368:337
|
[7] |
Xu C F, Ma M, Zeng S J, Ren G Z, Yang L W, Yang Q B.J Alloys Compd, 2011; 509: 7943
|
[8] |
Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G.Nat Lett, 2010; 463: 1061
|
[9] |
Gandhi Y, Ramachandra R M V, Srinvasa R C, Srikumar T, Kityk I V, Veeraiah N.J Appl Phys, 2010; 108: 023102
|
[10] |
Liu F, Ma E, Chen D Q, Yu Y L, Wang Y S.J Phys Chem, 2006; 110B: 20843
|
[11] |
Chen X Q, Li Y L, Kong F, Li L P, Sun Q, Wang F P.J Alloys Compd, 2012; 541: 505
|
[12] |
Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H.J Electrochem Soc, 2011; 158: G128
|
[13] |
Gao F, Zhang Q Y, Ding G J, Qin N, Bao D H.J Am Ceram Soc,2011; 94: 3867
|
[14] |
Wang R, Liu L, Sun J C, Qian Y N, Zhang Y S, Xu Y L. Opt Commun, 2012; 285: 957
|
[15] |
Wang H S, Duan C K, Tanner P A.J Phys Chem, 2008; 112C: 16651
|
[16] |
Zhou H, Wu G H, Gao F, Qin N, Bao D H.IEEE T Ultrason Ferr, 2010; 57: 2134
|
[17] |
Ruan K B, Chen X M, Liang T, Wu G H, Bao D H.J Appl Phys, 2008; 103: 074101
|
[18] |
Gunawan L, Lazar S, Gautreau O, Harnagea C, Pignolet A, Botton G A. Appl Phys Lett, 2009; 95: 192902
|
[19] |
Watanabe T, Funakubo H, Osada M, Uchida H, Okada I. J Appl Phys, 2005; 98: 024110
|
[20] |
Guo D Y, Li M Y, Wang J, Liu J, Yu B F, Yang B.Appl Phys Lett, 2007; 91: 232905
|
[21] |
Wyszecki G, Stiles W S. Color Science: Concepts and Methods, Quantitative Data and Formulae. Hoboken: John Wiley & Sons Inc, 2000: 130
|
[22] |
Ajroud M, Haouari M, Ben Ouada H, Mâaref H, Brenier A, Champagnon B.Mater Sci Eng, 2006; C26: 523
|
[23] |
Oliveira R C, Cavalcante L S, Sczancoski J C, Aguiar E C, Espinosa J W M, Varela J A, Pizani P S, Longo E.J Alloys Compd, 2009; 478: 661
|
[24] |
Ding G J, Gao F, Wu G H, Bao D H.J Appl Phys, 2011; 109: 123101
|
[25] |
Das G K, Tan T T Y.J Phys Chem, 2008; 112C: 11211
|
[26] |
Yeh D C, Petrin R R, Sibley W A, Madigou V, Adam J L, Suscavage M J.Phys Rev, 1989; 39B: 80
|
[27] |
Xiao Z S, Serna R, Afonso C N. J Appl Phys, 2007; 101: 033112
|
[28] |
Chan E M, Gargas D J, Schuck P J, Milliron D J.J Phys Chem, 2012; 116B: 10561
|
[29] |
Seo S Y, Shin J H, Bae B S, Park N, Penninkhof J J, Polman A.Appl Phys Lett, 2003; 82: 3445
|
[30] |
Pollnau M, Gamelin D R, Lüthi S R, Güdel H U, Hehlen M P.Phys Rev, 2000; 61B: 3337
|
[31] |
Ostermayer Jr F W, Van der Ziel J P, Marcos H M, Van Uitert L G, Geusic J E.Phys Rev, 1971; 3B: 2698
|
[32] |
Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M.J Appl Phys, 2004; 96: 661
|
[33] |
Sun H T, Xu S Q, Dai S X, Zhang J J, Hu L L, Jiang Z H.Solid State Commun, 2004; 132: 193
|
[34] |
Sun H T, Yu C L, Duan Z C, Wen L, Zhang J J, Hu L L, Dai S X.Opt Mater, 2006; 28: 448
|
[35] |
Gao F, Wu G H, Zhou H, Bao D H. J Appl Phys, 2009; 106: 12610
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|