Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1403-1408    DOI: 10.3724/SP.J.1037.2012.00250
Current Issue | Archive | Adv Search |
EFFECT OF HOMOGENIZATION TREATMENT ON THE HOT DEFORMATION OF GH742 ALLOY
PAN Xiaolin1), WANG Bo2),  SUN Wenru3),  TU Ganfeng1), GUO Shouren3), HU Zhuangqi3)
1) School of Materials \& Metallurgy, Northeastern University, Shenyang 110089
2) PLA Office in 430 Factory, xi'an 710021
3) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

PAN Xiaolin WANG Bo SUN Wenru TU Ganfeng GUO Shouren HU Zhuangqi. EFFECT OF HOMOGENIZATION TREATMENT ON THE HOT DEFORMATION OF GH742 ALLOY. Acta Metall Sin, 2012, 48(11): 1403-1408.

Download:  PDF(700KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As the increases of alloying elements, the highly alloyed Ni-based superalloys are very difficult to deform due to the low deformation plasticity, high flow stress and narrow deformation temperature interval. The hot deformation behavior of highly alloyed as-cast and homogenization treated GH742 alloys was investigated by isothermal compression conducted on a Gleeble-3500 thermo-simulation machine. The ingots were homogenization treated at 1140 ℃ for 6 h or at 1100 ℃ for 30 h and at 1160 ℃ for 40 h, followed by furnace cooling to 800 ℃ and then air cooling to room temperarue. The GH742 alloys possess lower flow stress, higher plasticity and larger recrystallization degree as the homogenization degree increases during the deformation process. High dislocation density and deformation bands are formed due to the elemental segregation and the precipitates of γ' and δ phase in the interdendritic regions, which enhance the flow stress. Mircocracks are initiated when the brittle precipitates such as Laves phase and Ni5Ce phase are crushed by compression. Stress concentration area as well as the banded structure of carbides is formed when the primary MC type carbides are deformed. The two-step homogenization treatment via low temperature pretreatment followed by high temperature diffusion presented by this paper can not only eliminate the elemental segregation and the detrimental precipitates, but also improve the dimension and distribution of MC type carbides, which decreases the flow stress, increases the hot deformation plasticity remarkably, and obtains homogeneously recrystallized microstructure.

Key words:  Ni-based superalloy      homogenization      hot plasticity      flow stress      dynamic recrystallization     
Received:  03 May 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00250     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1403

[1] Yuan Y, Gu Y F, Osada T, Zhong Z H, Yokokawa T, Harada H. Scr Mater, 2012; 67: 137

[2] Xie G, Wang L, Zhang J, Lou L H. Scr Mater, 2012; 66: 378

[3] Ning Y Q, Yao Z K, Fu M W, Guo H Z. Mater Sci Eng, 2011; A528: 8065

[4] Wu K, Liu G Q, Hu B F, Li F, Zhang YW, Tao Y, Liu J T. Mater Charact, 2010; 61: 330

[5] Li D F, Guo Q M, Guo S L, Peng H J, Wu Z G. Mater Des, 2011; 32: 696

[6] Zhong Z Y, Zhuang J Y. J Iron Steel Res, 2003; 15: 1

(仲增墉, 庄景云. 钢铁研究学报, 2003; 15: 1)

[7] Qu J L, Bi Z N, Du J H, Wang M Q, Wang Q Z, Zhang J. J Iron Steel Res, 2011; 18: 59

[8] Zhang B J, Zhao G P, Xu G H, Feng D. Acta Metall Sin, 2005; 41: 1207

(张北江, 赵光普, 胥国华, 冯涤. 金属学报, 2005; 41: 1207)

[9] Lu X D, Du J H, Deng Q, Zhong Z Y. J Alloys Compd, 2009; 486: 195

[10] Long Z D, Zhuang J Y, Deng B, Zhong Z Y. Acta Metall Sin, 1999; 35: 1211

(龙正东, 庄景云, 邓波, 仲增墉. 金属学报, 1999; 35: 1211)

[11] Zheng L, Gu C Q, Zheng Y R. Scr Mater, 2004; 50: 435

[12] Gizan X R, Liu E Z, Zheng Z, Yu Y S, Tong J, Zhai Y C. J Mater Sci Technol, 2011; 27: 113

[13] Wang K, Si H, Yang C, Xu T D. J Iron Steel Res Int, 2011; 18: 61

[14] Dupont J N, Robino C V, Michael J R, Notis M R, Marder A R. Metall Mater Trans, 1998; 29A: 2785

[15] Pan X L, Yu H Y, Tu G F, Sun W R, Hu Z Q. Trans Nonferrous Met Soc China, 2011; 21: 2402

[16] Semiatin S L, Kramb R C, Turner R E, Zhang F, Antony M M. Scr Mater, 2004; 51: 491

[17] Wang L, Pyczak F, Zhang J, Lou L H, Singer R F. Mater Sci Eng, 2011; A532: 487

[18] Kramb R C, Antony M M, Semiatin S L. Scr Mater, 2006; 54: 1645

[19] Pan X L, Sun W R, Li Z, Yang S L, Guo S R, Yang H C, Hu Z Q. Rare Met Mater Eng, 2010; 39: 55

(潘晓林, 孙文儒, 李 战, 杨树林, 郭守仁, 杨洪才, 胡壮麒. 稀有金属材料与工程, 2010; 39: 55)

[20] Pan X L, Yu H Y, Tu G F, SunWR, Hu Z Q. Mater Sci Technol, 2012; 28: 560

[21] Pan X L, Sun W R, Yang S L, Li Z, Guo S R, Yang H C, Hu Z Q. Chin J Mater Res, 2008; 22: 651

(潘晓林, 孙文儒, 杨树林, 李 战, 郭守仁, 杨洪才, 胡壮麒. 材料研究学报, 2008; 22: 651)

[22] Gottstein G, Deshpande S. Mater Sci Eng, 1987; 94: 147

[23] Wang Y, Shao W Z, Zhen L, Zhang B Y. Mater Sci Eng, 2011; A528: 3218

[24] Ning Y Q, Yao Z K, Liang X M, Liu Y H. Mater Sci Eng, 2012; A551: 7

[25] Wang K, Li M Q, Luo J, Li C. Mater Sci Eng, 2011; A528: 4723

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[11] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[12] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[13] XIANG Xuemei, JIANG He, DONG Jianxin, YAO Zhihao. As-Cast Microstructure Characteristic and Homogenization of a Newly Developed Hard-Deformed Ni-Based Superalloy GH4975[J]. 金属学报, 2020, 56(7): 988-996.
[14] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[15] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
No Suggested Reading articles found!