Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 33-40    DOI: 10.3724/SP.J.1037.2011.00450
论文 Current Issue | Archive | Adv Search |
THREE-DIMENSIONAL MICROSTRUCTURE RECONSTRUCTION AND THE EUTECTIC SPACING ADJUSTMENT DURING DIRECTIONAL SOLIDIFICATION OF Al-40%Cu HYPEREUTECTIC ALLOY
ZHAO Peng, LI Shuangming, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

ZHAO Peng LI Shuangming FU Hengzhi. THREE-DIMENSIONAL MICROSTRUCTURE RECONSTRUCTION AND THE EUTECTIC SPACING ADJUSTMENT DURING DIRECTIONAL SOLIDIFICATION OF Al-40%Cu HYPEREUTECTIC ALLOY. Acta Metall Sin, 2012, 48(1): 33-40.

Download:  PDF(5057KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Three-dimensional (3D) microstructures can clearly reveal the size, shape and distribution of the phases, providing a novel way to deeply understand the formation mechanism of the solidified phases. In this paper, by using the serial sectioning technique, the 3D microstructure of the primary Al2Cu phase was reconstructed and the eutectic spacing adjustment was investigated during directional solidification of Al-40%Cu hypereutectic alloy. The results show that the primary Al2Cu phase pattern was observed faceting due to the growing faceted angle and plane parallel to the solidification direction at the pulling rate of 5 μm/s. Further, there existed some hopper-like cavities in the 3D microstructure of the primary Al2Cu phase that caused by remelting owing to a large amount of the latent heat difficult to be extracted from the solidification interface. For the 3D eutectic microstructures of the Al-40%Cu alloy, the growth direction of the Al and Al2Cu phases in the coupled eutectics had a deviation angle of 5.1o with the heat flux direction and the phase volume fractions of the  Al and Al2Cu phases were measured directly to be 56.8% and 43.2%, respectively. In addition, at the abrupt change in pulling rate from 2 μm/s to 500 μm/s, the lamellar-to-rod eutectic transition was observed and the continuously splitting and branching occurred in different planes responsible for the eutectic spacing adjustment in the 3D microstructure of the Al-40%Cu alloy. Meanwhile the renuleation mechanism in the 2D microstructure for the adjustment of the eutectic spacing did not work in the 3D eutectic microstructure of the Al-40%Cu alloy.
Key words:  serial sectioning technique      three-dimensional microstructure reconstruction      directional solidification      primary Al2Cu phase      eutectic microstructure     
Received:  15 July 2011     
ZTFLH: 

TG111.4

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50971101 and 51074127) and Basic Research Foundation of NWPU (No.JC201029)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00450     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/33

[1] Spanos G. Scr Mater, 2006; 55: 3

[2] Isheim D, Kolli R P, Fine M E, Seidman D N. Scr Mater, 2006; 55: 35

[3] Liu H H, Schmidt S, Poulsen H F, Godfrey A, Liu Z Q, Sharon J A, Huang X. Science, 2011; 332: 833

[4] Khor K H, Buffiere J Y, Ludwig W, Sinclair I. Scr Mater, 2006; 55: 47

[5] Spowart J E. Scr Mater, 2006; 55: 5

[6] Mendoza R, Savin I, Thornton K, Voorhees P W. Nat Mater, 2004; 3: 385

[7] Wu D T. Nat Mater, 2004; 3: 353

[8] Kammer D, Voorhees P W. Acta Mater, 2006; 54: 1549

[9] Kammer D, Mendoza R, Voorhees P W. Scr Mater, 2006; 55: 17

[10] Luo L S, Wang X, Su Y Q, Li X Z, Guo J J, Fu H Z. Mater Rev, 2010; 24: 1

(骆良顺, 王新, 苏彦庆, 李新中, 郭景杰, 傅恒志. 材料导报, 2010; 24: 1)

[11] Lee J H, Liu S, Trivedi R. Metall Mater Trans, 2005; 36A: 3111

[12] Norris S A, Davis S H, Watson S J, Voorhees P W. J Cryst Growth, 2008; 310: 414

[13] Dantzig J A, Rappaz M. Solidification. Swiss: EPFL Press, 2009: 362

[14] Walkers H, Liu S, Lee J H, Trivedi R. Metall Mater Trans, 2007; 38A: 1417

[15] Quan Q R, Li S M, Fu H Z. Acta Metall Sin, 2010; 46: 500

(全琼蕊, 李双明, 傅恒志. 金属学报, 2010; 46: 500)

[16] Contieri R J, Rios C T, Zanotello M, Caram R. Mater Charact, 2008; 59: 693

[17] Singh H, Gokhale A M, Tewari A, Zhang S, Mao Y. Scr Mater, 2009; 61: 441

[18] Lee S G, Gokhale A M, Sreeranganathan A. Mater Sci Eng, 2006; 427: 92

[19] Liu S, Lee J H, Enlow D, Trivedi R. In: Rappaz M, Beckermann C, Trivedi R eds., Solidification Processes and Microstructures. Charlotte: TMS, 2004: 257

[20] Hunt J D, Liu S Z. Handbook of Crystal Growth, Vol.2, North–Holland: Elsevier, 1994: 1113

[21] Stefanescu D M. Science and Engineering of Casting Solidification. 2nd Ed., Berlin: Springer, 2009: 215

[22] Kurz W, Fisher D J. Fundamentals of solidification. 4th Ed., Switzerland: Trans Tech Pub, 2005: 109

[23] Tang L, Li S M, Fu H Z. Rare Met Mater Eng, 2007; 36: 617

(唐玲, 李双明, 傅恒志. 稀有金属材料与工程, 2007; 36: 617)

[24] Sunagawa I. Morphology and Perfection. Cambridge: Cambridge University Press, 2005: 370

[25] Colfen H, Antonietti M. Mesocrystals and Nonclassical Crystallization. Mississauga: John Wiley & Sons Ltd, 2008: 25

[26] Singh H, Gokhale A M, Mao Y, Tewari A, Sachdev A K. J Cryst Growth, 2009; 311: 4454

[27] Cantor B, Chadwick G A. J Cryst Growth, 1974; 23: 12

[28] Seetharamn V, Trivedi R. In: Stefanescu D M, Abbashian G J eds., Solidification Processing of Eutectic Alloys. Cincinnati: TMS, 1988: 65

[29] Hu H Q. Theory of Metal Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 175

(胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 175)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[8] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[11] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[12] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[13] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[14] Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications[J]. 金属学报, 2018, 54(5): 669-681.
[15] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
No Suggested Reading articles found!