Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 23-32    DOI: 10.3724/SP.J.1037.2011.00464
论文 Current Issue | Archive | Adv Search |
LARGE EDDY SIMULATION FOR UNSTEADY TURBULENT FLOW IN THIN SLAB CONTINUOUS CASTING MOLD
LI Baokuan1), LIU Zhongqiu1), QI Fengsheng1), WANG Fang1), XU Guodong2)
1) Department of Materials and Metallurgy, Northeastern University, Shenyang 110819
2) Baoshan Iron and Steel Limited Company, Shanghai 201900
Cite this article: 

LI Baokuan LIU Zhongqiu QI Fengsheng WANG Fang XU Guodong. LARGE EDDY SIMULATION FOR UNSTEADY TURBULENT FLOW IN THIN SLAB CONTINUOUS CASTING MOLD. Acta Metall Sin, 2012, 48(1): 23-32.

Download:  PDF(5594KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Unsteady turbulent flow in the thin slab continuous casting mold has been computed using the large eddy simulations (LES). The cassette filter function is used to deal with unsteady Navier-Stokes equation, and the Smagorinsky-Lilly sub-grid scale model is used to calculate the dissipative effort of the unresolved small eddies. And this LES model has been validated with the measurements of the particle image velocimetry (PIV) and the ultrasonic flaw detection. The computational domain includes the entire submerged entry nozzle (SEN) starting from the tundish exit and the extended mold region. The results show the characteristics of the unsteady turbulent flow in the thin slab continuous casting processes, such as the vortices distribution and the formation, development, shedding and fracture process of the large eddy coherent structures. The simulation also shows that the turbulent flow is asymmetric even if the nozzle and mold is perfect symmetric in geometry. The flow deviation of the molten steel in the mold is inevitable existence. And the interactions of flows in two sides of nozzle also can cause intensity velocity fluctuation near the meniscus. With the development of the unsteady turbulent flow, the flow deviation of the molten steel in the thin continuous casting strand presented periodic change, and the period is about 40 s.
Key words:  continuous casting mold      unsteady      large eddy simulation      vortex     
Received:  19 July 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.50934008)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00464     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/23

[1] Ho Y, Chen C, Wang WH. ISIJ Int, 1994; 24: 255

[2] Bai H, Thomas B G. Metall Mater Trans, 2001; 32B: 253

[3] Miki Y J, Thomas B G. Metall Mater Trans, 1999; 30B: 639

[4] Hershey D E, Thomas B G, Najjar F M. Int J Numer Methods Fluids, 1993; 17: 23

[5] Bai H, Thomas B G. Metall Mater Trans, 2001; 32B: 269

[6] Aboutalebi M R, Hasan M, Guthrie R I L. Metall Mater Trans, 1995; 26B: 731

[7] Lan X K, Khodadadi J M, Shen F. Metall Mater Trans, 1997; 28B: 321

[8] Bastiaansa Rob J M, Rindta C C M, Nieuwstadtb F T M, Steenhovena A A. Int J Heat Mass Transfer, 2000; 43: 375

[9] Moser R D, Kim J, Mansour N N. Phys Fluids, 1999; 4: 943

[10] Lesieur M, Metais O. Annu Rev Fluid Mech, 1996; 28: 45

[11] Thomas B G, Yuan Q, Sivaramakrishnan S, Shi T, Vanka S P, Assar M B. ISIJ Int, 2001; 41: 1262

[12] Thomas B G, Huang X, Sussman R C. Metall Mater Trans, 1994; 25B: 527

[13] Yuan Q, Sivaramakrishnan S, Vanka S P, Thomas B G. Metall Mater Trans, 2004; 35B: 967

[14] Yuan Q, Thomas B G, Vanka S P. Metall Mater Trans, 2004; 35B: 685

[15] Li B K, Li D H. Acta Metall Sin, 2002; 38: 315

(李宝宽, 李东辉. 金属学报, 2002; 38: 315)

[16] Li B K, Tsukihashi F. ISIJ Int, 2001; 41: 844

[17] Li B K, Okane T, Umeda T. Metall Mater Trans, 2000; 31B: 1491

[18] Li B K, Okane T, Umeda T. Metall Mater Trans, 2001; 32B: 1053

[19] Qian Z D, Wu Y L. Acta Metall Sin, 2004; 40: 88

(钱忠东, 吴玉林. 金属学报, 2004; 40: 88)

[20] Tang X L, Qian Z D, Wu Y L. J Tsinghua Univ (Sci Technol), 2003; 6: 802

(唐学林, 钱忠东, 吴玉林. 清华大学学报(自然科学版), 2003; 6: 802)

[21] Real C, Miranda R, Vilchis C, Barron M, Hoyos L, Gonzalez J. ISIJ Int, 2006; 46: 1183

[22] Herring J R. Front Fluid Mech, 1984; 14: 68

[23] Germano M. J Fluid Mech, 1992; 238: 325

[24] Smagorinsky J. Mon Weather Rev, 1963; 91: 99

[25] Lilly D K. Mon Weather Rev, 1965; 93: 11

[26] Van Driest E R. J Spacecr Rockets, 2003; 40: 1012

[27] Li X S, Xu J Z, Gu C W. Sci China Ser G, 2009; 1: 83

(李雪松, 徐建中, 顾春伟. 中国科学G辑, 2009; 1: 83)

[28] Zhang L, Thomas B G. ISIJ Int, 2003; 43: 271

[29] Yuan Q, Thomas B G, Vanka S P. Metall Mater Trans, 2004; 35B: 703

[30] Shi X G. Turbulence. Tianjin: Tianjin University Press, 1994: 190

(是勋刚. 湍流. 天津: 天津大学出版社, 1994: 190)
[1] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[2] Qiang WANG, Lianyu WANG, Hongxia LI, Jiawei JIANG, Xiaowei ZHU, Zhancheng GUO, Jicheng HE. Suppression Mechanism and Method of Vortex During Steel Teeming Process in Ladle[J]. 金属学报, 2018, 54(7): 959-968.
[3] Chang LIU, Shusen LI, Lifeng ZHANG. Simulation of Gas-Liquid Two-Phase Flow and Mixing Phenomena During RH Refining Process[J]. 金属学报, 2018, 54(2): 347-356.
[4] Haiyan TANG,Yongchang LIANG. FORMATION MECHANISM AND INFLUENCE FACTORS OF SINK VORTEX DURINGLADLE TEEMING[J]. 金属学报, 2016, 52(5): 519-528.
[5] LIU Zhongqiu1, LI Baokuan1, JIANG Maofa1, ZHANG Li2, XU Guodong2. LARGE EDDY SIMULATION OF UNSTEADY ARGON/STEEL TWO PHASE TURBULENT FLOW IN A CONTINUOUS CASTING MOLD[J]. 金属学报, 2013, 49(5): 513-522.
[6] CHEN Zhihui WANG Engang ZHANG XingwuWANG Yuanhua ZHU Mingwei HE Jicheng. STUDY ON THE BEHAVIOUR OF BUBBLES IN A CONTINUOUS CASTING MOLD WITH Ar INJECTION AND TRAVELING MAGNETIC FIELD[J]. 金属学报, 2012, 48(8): 951-956.
[7] YAO Jun Michael Fairweather LI Ning. DEPOSITION MECHANISM OF PARTICLE-LIKE CORROSION PRODUCT IN TURBULENT DUCT[J]. 金属学报, 2011, 47(7): 804-808.
[8] MENG Xiangning ZHU Miaoyong. ANALYSIS OF LIQUID FLUX CONSUMPTION MECHANISM FOR SLAB CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED[J]. 金属学报, 2009, 45(4): 485-489.
[9] Xiang-Ning MENG; Miao-Yong ZHU. ANALYSIS OF LIQUID FRICTION MECHANISM FOR SLAB CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED[J]. 金属学报, 2008, 44(10): 1193-1197 .
[10] Xiang-Ning MENG; Xu-Dong LIU. STUDY ON NON-SINUSOIDAL OSCILLATION FOR SLAB CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED Ⅰ. Mechanism of Oscillation Marks Formation[J]. 金属学报, 2007, 43(8): 839-846 .
[11] Xiang-Ning MENG. STUDY ON NON-SINUSOIDAL OSCILLATION FACTOR FOR CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED[J]. 金属学报, 2007, 43(2): 205-210 .
[12] QIAN Zhongdong; WU Yulin. Large Eddy Simulation And Controlling Of Vortexing Flow Of Molten Steel In Continuous Casting Mold[J]. 金属学报, 2004, 40(1): 88-93 .
[13] LI Baokuan;HE Jicheng;JIA Guanglin;GAO Yunyan(Northeastern University; Shenyang 110006). ELECTROMAGNETIC BRAKING ON FLOW FIELD OF MOLTEN STEEL IN THE THIN-SLAB CONTINUOUS CASTING MOLD[J]. 金属学报, 1997, 33(11): 1207-1214.
No Suggested Reading articles found!