Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 1-10    DOI: 10.3724/SP.J.1037.2011.00496
论文 Current Issue | Archive | Adv Search |
THEORY ANALYSIS ON THE NEW GENERATION OF CLEAN STEEL PRODUCTION PROCESS
XU Kuangdi1), XIAO Lijun2), GAN Yong2), LIU Liu2), WANG Xinhua3)
1) Chinese Academy of Engineering, Beijing 100088
2) State Key Laboratory of Advanced Steel Processes and Products, Central Iron and Steel Research Institute, Beijing 100081
3) Jing Tang Iron and Steel Corporation, Tangshan 063200
Cite this article: 

XU Kuangdi XIAO Lijun GAN Yong LIU Liu WANG Xinhua. THEORY ANALYSIS ON THE NEW GENERATION OF CLEAN STEEL PRODUCTION PROCESS. Acta Metall Sin, 2012, 48(1): 1-10.

Download:  PDF(5056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the thermodynamic analysis on the selective oxidation of the main elements in the new generation of clean steel production process, and the production practices of hot metal treatment in the new process of clean steel production accumulated by the Jing Tang Iron and Steel Corporation, the control of the main elements such as S, P, C, etal., were investigated, and the main characteristics of the new generation of clean steel production process were analyzed. We indicate that several production problems must be solved. The research results show that, by using KR desulphurization technology, the S content of hot metal can be steadily controlled to less than 0.0020%. The final S control of the new production process of clean steel depends mainly on the resulfurization content in the dephosphorization furnace. Increasing the slag basicity and reducing the content of S from scrap and slag forming materials can reduce the resulfurization of hot metal. The formation of proper slag basicity at relatively lower hot metal pretreatment temperature (1300-1350 ℃) and at relatively higher oxygen potential is the key to solving the problem of removing P at high C content. The P content in dephosphorization furnace, when producing common low P steel (P<0.006%), may be controlled at less than 0.03%, whereas the P content should be below 0.008% when producing ultra low P steel (P<0.002%). Less-slag smelting, lower Fe losing and high carbon tapping of decarburization furnace are the important technological characteristics of the new generation of clean steel production process.
Key words:  clean steel      desulfurization      dephosphorization      hot metal pretreatment      selective oxidation     
Received:  04 August 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00496     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/1

[1] Oeters F, Stromenger P, Pluschkell W. Arch Eisenhuttenwes, 1977; (44): 727

[2] Niedringhaus J C, Fruehan R J. Metall Trans, 1988; 19B: 261

[3] Iron and Steel Institute of Japan. Iron and Steel Manual. Tokyo: MARUZEN Company Limited, 1981: 154

(日本铁钢协会 编. 铁钢便览. 东京: 丸善株式会社, 1981: 154)

[4] Turkdogan E T. Fundamentals of Steelmaking. London: Cambridge University Press, 1996: 180

[5] Thomas R. Free Energy of Formation of Binary Compounds. London: MIT Press, 1971: 32

[6] Chipman J. Metall Trans, 1970; 1: 2163

[7] Fumitaka T, Midiei N, Takashi O, Nobuo S. Tetsu Hagan´e, 1990; 76: 1664

(月桥文孝, 中村右英, 折本隆, 佐野信雄. 铁と钢, 1990, 76: 1664)

[8] Matsuo T, Yamazaki I, Masuda S, Yoshida K. Steelmaking Conference Proceedings, Detroit: ISS–AIME, 1990: 115

[9] Shozo K, Matsuhide A, Toshiharu T. R&D Kobe Steel Engineering Reports, 1986; 36(1): 23

[10] Toshiyuki U, Kiyohito F. The Tenth Japan–China Symposium on Science and Technology of Iron and Steel, Chiba, Japan, 2004(11): 122
[1] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[2] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[3] Qiang WANG, Lianyu WANG, Hongxia LI, Jiawei JIANG, Xiaowei ZHU, Zhancheng GUO, Jicheng HE. Suppression Mechanism and Method of Vortex During Steel Teeming Process in Ladle[J]. 金属学报, 2018, 54(7): 959-968.
[4] PENG Xiao, WANG Fuhui. HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS[J]. 金属学报, 2014, 50(2): 202-211.
[5] CHEN Yexin CHANG Qinggang. EFFECT OF TRAPS ON DIFFUSIVITY OF HYDROGEN IN 20g CLEAN STEEL[J]. 金属学报, 2011, 47(5): 548-552.
[6] GAO Ao WANG Qiang LI Dejun CHAI Haishan ZHAO Lijia HE Jicheng. STATE OF Fe-C ALLOY IN THE ELECTROMAGNETIC STEEL-TEEMING SYSTEM[J]. 金属学报, 2011, 47(2): 219-223.
[7] GAO Ao WANG Qiang LI Dejun JIN Baigang WANG Kai HE Jicheng. EFFICIENCY AND INFLUENCING FACTORS OF ELECTROMAGNETIC STEEL-TEEMING TECHNOLOGY[J]. 金属学报, 2010, 46(5): 634-640.
[8] XU Kuangdi. CERTAIN BASIC SUBJECTS ON CLEAN STEEL[J]. 金属学报, 2009, 45(3): 257-269.
[9] ZHANG Zhigang; P.Y. Hou; NIU Yan. Oxidation of Fe-xCr-10Al (x=0, 5, 10) Alloys at 900 ℃: A Novel Example of the Third Element Effect[J]. 金属学报, 2005, 41(6): 649-654 .
[10] XU Kuangdi; JIANG Guochang; ZHANG Xiaobing; XU Jianlun (Shanghai Enhanced Laboratory of Ferrometallurgy; Shanghai University; Shanghai 200072). Cr YIELD AND OXIDATIONAL DEPHOSPHORIZATION DURING THE BATH SMELTING REDUCTION PROCESS[J]. 金属学报, 1998, 34(5): 467-472.
No Suggested Reading articles found!