Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 219-223    DOI: 10.3724/SP.J.1037.2010.00418
论文 Current Issue | Archive | Adv Search |
STATE OF Fe-C ALLOY IN THE ELECTROMAGNETIC STEEL-TEEMING SYSTEM
GAO Ao, WANG Qiang, LI Dejun, CHAI Haishan, ZHAO Lijia, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

GAO Ao WANG Qiang LI Dejun CHAI Haishan ZHAO Lijia HE Jicheng. STATE OF Fe-C ALLOY IN THE ELECTROMAGNETIC STEEL-TEEMING SYSTEM. Acta Metall Sin, 2011, 47(2): 219-223.

Download:  PDF(808KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A new method (electromagnetic steel-teeming method) using electromagnetic induction heating in slide-gate was proposed to overcome the disadvantage of the pollution of the traditional nozzle sand on the molten steel. The basic idea of this new process is to melt part or whole of the new ladle well-packing material (i.e. Fe-C alloy with similar composition of the molten steel), which becomes the substitute of the traditional nozzle sand, and achieve smoothly molten steel-teeming. In the experiment, the state of the Fe-C alloy well-packed in the upper nozzle was examined when the ladle held molten steel using the self-designed electromagnetic steel-teeming simulation facility. The results showed that the F-C alloy in the upper nozzle were divided into liquid Fe-C alloy, solidified Fe-C alloy, liquid-sintered, solid-sintered and original layers. The solidified, liquid-sintered and solid-sintered layers could prevent the molten steel flow into the upper nozzle from destroing the slide plate. The blocking layers could be melted with induction heating to achieve electromagnetic steel-teeming. In addition, the position of the liquid/solid interface of the Fe-C alloy in the upper nozzle was investigated. The length of liquid Fe-C alloy increased with the increase of time after molten steel poured into the ladle and then kept in a certain length. Furthermore, the position of the interface increased with the increase of melting points which were related to the composition of the Fe-C alloy. The experimental results indicated that 100% automatically teeming of the ladle would be achieved after using the electromagnetic steel-teeming technology.
Key words:  nozzle sand      electromagnetic steel-teeming      clean steel      Fe-C alloy      induction heating     
Received:  20 August 2010     
ZTFLH: 

TF341.6

 
Fund: 

Supported by Science and Technology Program of Liaoning Province (No.2008221015), Liaoning Bai Qian Wan Talents Program and Program of Introducing Talents of Discipline to University (No.B07015)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00418     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/219

[1] Zhang L F, Rietow B, Thomas B G, Eakin K. ISIJ Int, 2006; 46: 670

[2] Mazzaferro G M, Piva M, Ferro S P, Bissio P, Iglesias M, Calvo A, Goldschmit M B. Ironmaking Steelmaking, 2004; 31: 503

[3] Tanaka H, Nishihara R, Miura R, Tsujino R, Kimura T, Nishi T, Imoto T. ISIJ Int, 1994; 34: 868

[4] Tanaka H, Nishihara R, Kitagawa I, Tsujino R. ISIJ Int, 1993; 33: 1238

[5] Pan H C, Ko Y C. Ironmaking Steelmaking, 1992; 19: 390

[6] Adamo P, Arienzo M, Bianco M R, Terribile F, Violante P. Sci Total Envir, 2002; 295: 17

[7] Ndiokwere C L, Ezihe C A. Environ Int, 1990; 16: 291

[8] Ma G J, Garbers–Craig A M. J Hazard Mater, 2009; 169: 210

[9] Gonzalez–Miqueo L, Elustondo D, Lasheras E, Santamaria J M. Chemosphere, 2010; 78: 965

[10] He J C, Marukawa K, Wang Q. Chin Pat, ZL1810417, 2006

(赫冀成, 丸川雄净, 王强. 中国专利, ZL1810417, 2006)

[11] Gao A, Wang Q, He J C. J Northeast Univ (Nat Sci), 2010; 31: 515

(高翱, 王强, 赫冀成. 东北大学学报(自然科学版), 2010; 31: 515)

[12] Gao A, Wang Q, Li D J, Jin B G, Wang K, He J C. Acta Metall Sin, 2010; 46: 634

(高 翱, 王 强, 李德军, 金百刚, 王凯, 赫冀成. 金属学报, 2010; 46: 634)

[13] Gao A, Wang Q, Li D J, Jin B G, Wang K, He J C. ISIJ Int, 2010; 50: 1770

[14] Tian H X, Mao Z Z, Wang A N. ISIJ Int, 2009; 49: 58

[15] Olika B, Bjorkman B. Scand J Metall, 1993; 22: 213

[16] Ganguly S, Chakraborty S. ISIJ Int, 2004; 44: 537

[17] Nemchinov A I, Pevzner M B. Metallurgist, 1985; 29: 236

[18] Subramanian R Schneibel J H. Mater Sci Eng, 1998; A244: 103

[19] Plucknett K P, Becher P F, Subramanian R. J Mater Res, 1997; 12: 2515

[20] Muscat D, Shanker K, Drew R A L. Mater Sci Technol, 1992; 8: 971

[21] Chen J X. Handbook of Continuous Casting. Beijing: Metallurgial Industry Press, 1991: 80

(陈家祥. 连续铸钢手册. 北京: 冶金工业出版社, 1991: 80)
[1] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[3] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[4] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[5] Ming HE, Xianliang LI, Qingwei WANG, Lianyu WANG, Qiang WANG. Influence of Magnetic Shielding on the Power Loss of Induction Heating Power Supply in the Electro-magnetic Induction Controlled Automated Steel Teeming System[J]. 金属学报, 2019, 55(2): 249-257.
[6] Qiang WANG, Lianyu WANG, Hongxia LI, Jiawei JIANG, Xiaowei ZHU, Zhancheng GUO, Jicheng HE. Suppression Mechanism and Method of Vortex During Steel Teeming Process in Ladle[J]. 金属学报, 2018, 54(7): 959-968.
[7] JIANG Yanbin, LIU Xinhua, WANG Chunyang, MO Yongda, XIE Jianxin. INFLUENCE OF INDUCTION HEATING CONTINUOUS ANNEALING ON RECRYSTALLIZATION AND INTER- FACIAL INTERMETALLIC COMPOUND OF COPPER-CLAD ALUMINUM WIRE[J]. 金属学报, 2014, 50(4): 479-488.
[8] XU Kuangdi XIAO Lijun GAN Yong LIU Liu WANG Xinhua. THEORY ANALYSIS ON THE NEW GENERATION OF CLEAN STEEL PRODUCTION PROCESS[J]. 金属学报, 2012, 48(1): 1-10.
[9] CHEN Yexin CHANG Qinggang. EFFECT OF TRAPS ON DIFFUSIVITY OF HYDROGEN IN 20g CLEAN STEEL[J]. 金属学报, 2011, 47(5): 548-552.
[10] GAO Ao WANG Qiang LI Dejun JIN Baigang WANG Kai HE Jicheng. EFFICIENCY AND INFLUENCING FACTORS OF ELECTROMAGNETIC STEEL-TEEMING TECHNOLOGY[J]. 金属学报, 2010, 46(5): 634-640.
[11] XU Kuangdi. CERTAIN BASIC SUBJECTS ON CLEAN STEEL[J]. 金属学报, 2009, 45(3): 257-269.
[12] Xiang Zhao; Shoujing WANG; GONG Ming-Long; liang zuo. Influence of austenization temperature on the morphology of pearlite in Fe-0.12%C alloy under high magnetic field[J]. 金属学报, 2008, 44(11): 1305-1309 .
[13] YU Degang; ZHU Yuru; CHEN Dajun; TANG Xiaohong; ZHANG Huijuan(Shanghai Jiaotong University)(Manuscript received 6 January;1994; in revised form 23 May; 1994). BAINITIC TRANSFORMATION UNITS AND FORMATION OF MARTENSITE-LIKE BAINITE IN Fe-C ALLOYS[J]. 金属学报, 1994, 30(9): 385-393.
[14] JIANG Jianqing(Southeast University;Nanjing). EFFECTS OF GRAPHITE MORPHOLOGY AND MATRICES ON FRACTURE BEHAVIOUR OF CAST IRONS[J]. 金属学报, 1994, 30(8): 374-379.
[15] GU Yujtong; YAO Jian; ZHOU Zhaoying(Tsinghua University;Beijing);ZHANG Liwen(North China Institute of Electric Power). FORMATION MECHANISM OF METAL PIPE-BEND WITH SMALL BENDING RADIUS UNDER INDUCTION HEATING[J]. 金属学报, 1994, 30(24): 543-548.
No Suggested Reading articles found!