Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 605-610    DOI: 10.3724/SP.J.1037.2010.00665
论文 Current Issue | Archive | Adv Search |
CRACK PROPAGATION AND DOMAIN SWITCHING IN BaTiO3 SINGLE CRYSTALS UNDER EXTERNAL FIELD
JIANG Bing1), XING Xianran1), GUO Zhimeng2)
1) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2) Advanced Material and Technology Institute, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

JIANG Bing XING Xianran GUO Zhimeng. CRACK PROPAGATION AND DOMAIN SWITCHING IN BaTiO3 SINGLE CRYSTALS UNDER EXTERNAL FIELD. Acta Metall Sin, 2011, 47(5): 605-610.

Download:  PDF(767KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Domain switching and crack propagation in BaTiO3 single crystal under external field were in-situ observed by polarized light microscopy (PLM). It was found that under mechanical field, domain-switching bands appear around the crack tip to relax stress and domain switching occurred before crack propagation. Under electric field, the internal stress induced by domain switching results in crack propagation.
Key words:  domain switching      crack propagation      in-situ observation      BaTiO3 single crystal     
Received:  09 December 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50571011) and China Postdoctoral Science Foundation (No.2010048019)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00665     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/605

[1] Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001: 1

(杨卫. 力电失效学. 北京: 清华大学出版社, 2001: 1)

[2] Lynch C S. Acta Mater, 1996, 44: 4137

[3] Lu W, Fang D N, Hwang K C. Acta Mater, 1999; 47: 2913

[4] Li F X, Rajapakse R K N D. Acta Mater, 2007; 55: 6472

[5] Shaikh M G, Phanish S. Sivakumar S M. Comput Mater Sci, 2006; 37: 178

[6] Tang L P, Xie S H, Zheng X J, Zhou Y C, Li J Y. Mech Mater, 2008; 40: 362

[7] Tan X, Shang J K. J Appl Phys, 2004, 96: 2805

[8] Zhang Z K, Fang D N, Soh A K. Mech Mater, 2006; 38: 25

[9] Roelofs A, Bottger U, Waser R. Appl Phys Lett, 2000; 77: 3444

[10] Shin S, Baek J, Hong J W, Khim Z G. J Appl Phys, 2004; 96: 4372

[11] Jiang B, Bai Y, Chu W Y, Shi S Q, Qiao L J. Su Y J. Appl Phys Lett, 2008; 93: 152905

[12] Zhang Z H, Qi X Y, Duan X F. Appl Phys Lett, 2006; 89: 242905

[13] Park J H, Park J, Lee K B. Appl Phys Lett, 2007; 91: 012906

[14] Fang F, Yang W, Zhang F C, Luo H S. J Am Ceram Soc, 2005; 88: 2491

[15] Huang H Y, Chu W Y, Su Y J, Qiao L J, Gao K W. Mater Sci Eng, 2005; B122: 1

[16] Wang F, Su Y J, He J Y, Qiao L J, Chu W Y. Scr Mater, 2006; 54: 201

[17] Wang Y, Chu W Y, Gao K W, Su Y J, Qiao L J. Appl Phys Lett, 2003; 82: 1583

[18] Kounga Njiwa A B, Lupascu D C, Rodel J. Acta Mater, 2004; 52: 4919

[19] Hwang S C, Lynch C S, McMeeking R M. Acta Metall Mater, 1995; 43: 2073

[20] Meschke F, Kollek A, Schneider G A. J Eur Ceram Soc, 1997; 17: 1143

[21] Busche M J, Hsia K J. Scr Mater, 2001; 44: 207

[22] Beom H G, Kang K J. Acta Mech, 2006; 185: 201

[23] Jiang Y J, Fang D N, Li F X. Appl Phys Lett, 2007; 90: 222907

[24] Jiang B, Bai Y, Cao J L, Su Y J, Shi S Q, Chu W Y, Qiao L J. J Appl Phys, 2008; 103: 116102

[25] Jiang B, Bai Y, Chu W Y, Shi S Q, Qiao L J. Su Y J. Appl Surf Sci, 2008; 254: 5594

[26] Huang K Z, Wang Z Q. Macro–Micro–Mechanics and Strengthening and Toughening Design of Materials, Beijing: Tsinghua University Press, 2003: 182

(黄克智, 王自强. 材料的宏微观力学与强韧化设计. 北京: 清华大学出版社, 2003: 182)

[27] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environment Sensitive Fracture. Beijing: Science Press, 2000: 77

(褚武扬, 乔利杰, 陈奇志, 高克玮. 断裂与环境断裂. 北京: 科学出版社, 2000: 77)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[3] Dongyu HE,Yuxin LIU. PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film[J]. 金属学报, 2019, 55(3): 325-331.
[4] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[5] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
[6] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[7] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[8] YU Long, SONG Xiping, ZHANG Min, LI Hongliang, JIAO Zehui, YU Huichen. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. 金属学报, 2014, 50(10): 1253-1259.
[9] ZHOU Yanlei XU Yang CHEN Jun LIU Zhenyu. EXPERIMENTAL STUDY OF THE IMPACT FRACTURE BEHAVIOR OF FH550 OFFSHORE PLATFORM STEEL[J]. 金属学报, 2011, 47(11): 1382-1387.
[10] ZHAO Xianwu CHU Wuyang QIAO Lijie. DOMAIN SWITCHING AND THE CHANGE IN INDENTATION CRACKS FOR BaTiO3 SINGLE CRYSTAL UNDER THE ELECTRIC FIELD PERPENDICULAR TO THE POLARIZATION[J]. 金属学报, 2010, 46(3): 340-345.
[11] ZHAO Xianwu CHU Wuyang QIAO Lijie. SUB–CRITICAL CRACK GROWTH IN AIR AND DOMAIN SWITCHING FOR BaTiO3 SINGLE CRYSTAL UNDER CONSTANT DEFLECTION[J]. 金属学报, 2010, 46(2): 167-171.
[12] . Effects of humidity on domain switching in BaTiO3 single crystals under sustained electric field[J]. 金属学报, 2008, 44(9): 1090-1094 .
[13] ;. THREE DIMENSIONS PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR FERROELECTRIC MATERIALS[J]. 金属学报, 2008, 44(8): 927-932 .
[14] Gaofei Liang. IN-SITU OBSERVATION OF δ→γ PHASE TRANSFORMATION OF AN AISI304 STAINLESS STEEL[J]. 金属学报, 2007, 43(2): 119-124 .
[15] Gaofei Liang. IN-SITU OBSERVATION OF NUCLEATION AND GROWTH OF HIGH-TEMPERATURE δ PHASE DURING AUSTENITE → FERRITE+LIQUID PHASE TRANSFORMATION IN AN AISI304 STAINLESS STEEL[J]. 金属学报, 2006, 42(8): 805-809 .
No Suggested Reading articles found!