Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 442-448    DOI: 10.3724/SP.J.1037.2010.00466
论文 Current Issue | Archive | Adv Search |
ELECTROCHEMICAL BEHAVIORS OF ULTRA HIGH STRENGTH STEELS WITH CORROSION PRODUCTS
SUN Min1), XIAO Kui1), DONG Chaofang1), LI Xiaogang2)
1) Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
2) Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

SUN Min XIAO Kui DONG Chaofang LI Xiaogang. ELECTROCHEMICAL BEHAVIORS OF ULTRA HIGH STRENGTH STEELS WITH CORROSION PRODUCTS. Acta Metall Sin, 2011, 47(4): 442-448.

Download:  PDF(1200KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical behaviors of ultra high strength steels, 300M and AerMet 100, with corrosion products which were formed during salt spray test were studied using potentiodynamic polarization curve, EIS, SEM, scan Kelvin probe (SKP) and Raman spectroscopy. The results show that the corrosion products on the steel 300M are γ-FeOOH and Fe(OH)3, and those on the steel AerMet 100 are β-FeOOH, Fe3O4 and γ-Fe2O3 after salt spray test. Because of the compact characterization, Fe3O4 and γ-Fe2O3 have a better protection property for substrate by hindering the permeation of O2 and Cl-. The corrosion potentials shift negatively and corrosion current densities become larger with increasing salt spray time, meaning a faster rate of anodic dissolution for these two steels. After salt spray test, the values of Kelvin potential for the two steels are 0.5-0.6 V positive than those before tests, and more uneven. For 300M, the corrosion resistance of rust layer becomes larger/smaller with the corrosion productions gathering/drapping on/from the samples. The electrochemical reaction for AerMet 100 is diffusion--controlled process and the value of Warburg impedence which expresses the diffusion--hindering effect becomes larger. The corrosion resistance and protection ability of corrosion products for steel AerMet 100 are better than those of steel 300M.
Key words:  ultra high strength steel      scan Kelvin probe      Raman spectroscopy      corrosion product      micro electrochemistry     
Received:  13 September 2010     
ZTFLH: 

TG 172.4

 
Fund: 

Supported by National Science and Technology Infrastructure Platforms Construction Projects (No.2005DKA10400) and National Natural Science Foundation of China (No.51001012)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00466     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/442

[1] Gra¸ca M L A, Hoo C Y, Silva O M M, Lourenco N J. Eng Fail Anal, 2009; 16: 182

[2] Ritchie R O, Horn R M. Metall Mater Trans, 1978; 9A: 331

[3] Garrison W M J, Moody N R. Metall Mater Trans, 1987; 18A: 1257

[4] Li J, Li Z, Yan M G. Mater Eng, 2007; (4): 61

(李杰, 李志, 颜鸣皋. 材料工程, 2007; (4): 61)

[5] Hao X L, Liu J H, Li S M, Yu M,Wang ZW. J Aeronaut Mater, 2010; 30(1): 67

(郝雪龙, 刘建华, 李松梅, 于美, 王宗武. 航空材料学报, 2010; 30(1): 67)

[6] Liu D X, Jin S, He J W. Spec Steel, 1997; 18(6): 20

(刘道新, 金 石, 何家文. 特殊钢, 1997; 18(6): 20)

[7] Youngblood J L, Raghavan M. Metall Trans, 1977; 8A: 1439

[8] Padmanabhan R, Wood W E. Mater Sci Eng, 1984; 66: 125

[9] Pound B G. Acta Mater, 1998; 46: 5733

[10] Figueroal D, Robinson M J. Corros Sci, 2010; 52: 1593

[11] Zhang H, Li X G, Du C W, Qi H B, Huang Y Z. J Raman Spectrosc, 2009; 409: 656

[12] Hao X C, Su P, Xiao K, Dong C F, Li X G. Corros Prot, 2009; 30: 297

(郝献超, 苏 鹏, 肖 葵, 董超芳, 李晓刚. 腐蚀与防护, 2009; 30: 297)

[13] Fu A Q, Tang X, Cheng Y F. Corros Sci, 2009; 51: 186

[14] Evans U R. Corros Sci, 1972; 12: 227

[15] Zhong J Y, Sun M, Liu D B, Li X G, Liu T Q. Int J Miner Metall Mater, 2010; 17: 282

[16] Ting X, Cheng Y F. Electrochim Acta, 2009; 54: 1499

[17] Dong C F, Sheng H, An Y H, Li X G, Xiao K, Cheng Y F. Prog Org Coat, 2010; 67: 269

[18] Sun M, Xiao K, Dong C F, Li X G. Acta Metall Sin (Engl Lett), 2010; 23: 301

[19] Zhou J L, Li X G, Du C W, Li Y L, Li T, Pan Y. Acta Metall Sin, 2010; 46: 251

(周建龙, 李晓刚, 杜翠薇, 李云玲, 李涛, 潘莹. 金属学报, 2010, 46: 251)
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[3] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[4] Xingchen CHEN, Jie WANG, Deren CHEN, Shuncong ZHONG, Xiangfeng WANG. Effect of Na on Early Atmospheric Corrosion of Al[J]. 金属学报, 2019, 55(4): 529-536.
[5] Hui ZHANG, Yanxia DU, Wei LI, Minxu LU. Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J]. 金属学报, 2017, 53(8): 975-982.
[6] CAO Fengting, WEI Jie, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE[J]. 金属学报, 2014, 50(6): 674-684.
[7] WANG Binbin, WANG Zhenyao, CAO Gongwang, LIU Yanjie, KE Wei. LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA[J]. 金属学报, 2014, 50(1): 49-56.
[8] YAO Jun Michael Fairweather LI Ning. DEPOSITION MECHANISM OF PARTICLE-LIKE CORROSION PRODUCT IN TURBULENT DUCT[J]. 金属学报, 2011, 47(7): 804-808.
[9] YANG Jingfeng DONG Junhua KE Wei CHEN Nan. INFLUENCE OF pH VALUES AND CORROSION PRODUCTS ON LOW CARBON STEEL CORROSION SUSCEPTIBILITY IN BORATE BUFFER SOLUTION[J]. 金属学报, 2011, 47(2): 152-156.
[10] CHENG Xuan. Phase Transitions of PLZT Ceramics near MPB Observed by In-situ Raman Spectroscopy[J]. 金属学报, 2008, 44(1): 29-33 .
[11] Bai-Gang AN. ATMOSPHERIC CORROSION OF PURE COPPER DURING INITIAL EXPOSURE STAGE IN SHENYANG ATMOSPHERE[J]. 金属学报, 2007, 42(1): 77-81 .
No Suggested Reading articles found!