Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 251-256    DOI: 10.3724/SP.J.1037.2009.00470
论文 Current Issue | Archive | Adv Search |
ANODIC ELECTROCHEMICAL BEHAVIOR OF X80 PIPELINE STEEL IN NaHCO3 SOLUTION
ZHOU Jianlong1; LI Xiaogang1; DU Cuiwei1; LI Yunling1; LI Tao1;PAN Ying2
1.Corrosion and Protection Center; University of Science and Technology Beijing; Beijing 100083
2.Wuhan Research Institute of Materials Protection; Wuhan 430030
Cite this article: 

ZHOU Jianlong LI Xiaogang DU Cuiwei LI Yunling LI Tao PAN Ying. ANODIC ELECTROCHEMICAL BEHAVIOR OF X80 PIPELINE STEEL IN NaHCO3 SOLUTION. Acta Metall Sin, 2010, 46(2): 251-256.

Download:  PDF(1328KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

X80 steel has the potential to be widely used for building the gas transmission pipelines because of its high–intensity and high–toughness. Its corrosion performance is a key problem for the life expectancy, especially in soil environment. The anodic electrochemical behavior of X80 pipeline steel in NaHCO3 solution was studied using potentiodynamic polarization curve, dynamic electrochemical impedance spectroscopy (DEIS) as well as SEM observation. The results show that the shape of the polarization curves changes with HCO3- concentration. The corrosion rate of X80 pipeline steel first increases and then decreases with the increase of HCO3- concentration. 0.009 mol/L is the critical concentration of HCO3- for forming the'passive' film of the X80 pipeline steel. There is no anodic current peak in the solution when HCO3- concentration is below 0.009 mol/L, and one anodic current peak below 0.05 mol/L and two anodic current peaks above 0.1 mol/L. The results of the DEIS measurements are in complete agreement with the potentiodynamic polarization curve. The corrosion products chane with polarization potential and two equivalent circuits are used to explain the experimental spectra of X80 pipeline steel in the whole corrosion process. Therefore, the combination of dynamic polarization cure and DEIS methods can be well used to investigate the corrosion behavior of X80 pipeline steel in aHCO3 solution at various potentials. In addition, different corrosion products forming at various potentials and the corrosion mechanisms of X80 pipeline steel are briefly analyzed.

Key words:  X80 pipeline steel      potentiodynamic polarization curve;dynamic electrochemical impedance spectroscopy     
Received:  13 July 2009     
Fund: 

Supported by National Science and Technology Infrastructure Platforms Construction Projects (No.2005DKA10400)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00470     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/251

[1] Li D G, Feng Y R, Bai Z Q, Zhu J W, Zheng M S. Appl Surf Sci, 2008; 254: 2837
[2] Liang P, Li X G, Du C W, Chen X. Mater Des, 2009; 30: 1712
[3] Li D G, Feng Y R, Bai Z Q, Zhu J W, Zheng M S. Electrochim Acta, 2007; 52: 7877
[4] Du C W, Li X G, Chen X, Liang P, Guo H. Acta Metall Sin (Engl Lett), 2008; 21: 235
[5] Li M C, Cheng Y F. Electrochim Acta, 2008; 53: 2831
[6] Liu Z Y, Li X G, Du C W, Zhai G L, Cheng Y F. Corros Sci, 2008; 50: 2251
[7] Mao X, Liu X, Revie R W. Corrosion, 1994; 50: 651
[8] Zeng Y M, Luo J L, Norton P R. Electrochim Acta, 2004; 49: 703
[9] Fraunhofer J A V. Corros Sci, 1970; 10: 245
[10] Armstrong R D, Coates A C. J Electroanal Chem Interfacial Electrochem, 1974; 50: 303
[11] Lu Z P, Huang C B, Huang D L, Yang W. Corros Sci, 2006; 48: 3049
[12] Darowicki K, Krakowiak S, ´Slepski P. Electrochim Acta, 2004; 49: 2909
[13] Nagarajan S, Karthega M, Rajendran N. J Appl Electrochem , 2007; 37: 195
[14] Arutunow A, Darowicki K. Electrochim Acta, 2008; 53: 4387
[15] El–Naggar M M. J Appl Electrochem, 2004; 34: 911
[16] Zhao J M, Zuo Y. Electrochemistry, 2005; 11: 27

[1] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[2] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[3] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[4] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[5] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[6] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[7] FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. 金属学报, 2013, 49(6): 689-698.
[8] WANG Xinhua, LI Xiugang, LI Qiang, HUANG Fuxiang,LI Haibo, YANG Jian. CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES[J]. 金属学报, 2013, 49(5): 553-561.
[9] LIU Zhiyong WANG Changpeng DU Cuiwei LI Xiaogang. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2011, 47(11): 1434-1439.
[10] DENG Wei GAO Xiuhua QIN Xiaomei GAO Xin ZHAO Dewen DU Linxiu. EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS[J]. 金属学报, 2010, 46(8): 959-966.
[11] CHEN Xu WU Ming HE Chuan XIAO Jun. EFFECT OF APPLIED POTENTIAL ON SCC OF X80 PIPELINE STEEL AND ITS WELD JOINT IN KU’ERLE SOIL SIMULATED SOLUTION[J]. 金属学报, 2010, 46(8): 951-958.
[12] DENG Wei GAO Xiuhua QIN Xiaomei ZHAO Dewen DU Linxiu WANG Guodong. IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL[J]. 金属学报, 2010, 46(5): 533-540.
[13] . Photo-electrochemical Characterization of Passive Film Formed on X80 Pipeline Steel[J]. 金属学报, 2008, 44(6): 739-744 .
No Suggested Reading articles found!