Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (6): 21-26    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF BIAS STRESS ON NON-LINEAR INTERNAL FRICTION OF Al-Mg ALLOY
TAN Qi Laboratory of Internal Friction and Defects in Solids; University of Science and Technology of China; Hefei
Cite this article: 

TAN Qi Laboratory of Internal Friction and Defects in Solids; University of Science and Technology of China; Hefei. EFFECT OF BIAS STRESS ON NON-LINEAR INTERNAL FRICTION OF Al-Mg ALLOY. Acta Metall Sin, 1991, 27(6): 21-26.

Download:  PDF(529KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of longitudinal and torsional bias stresses on anomalous amplitude-dependent internal friction was studied. The longitudinal bias stress may always weaken the anomalous amplitude-dependent effect, while the torsional one may induce different effects from different directions applied. Bias stress effect exhibits only in such alloy undergone proper heat treatment or cold working. The anomalous amplitude-dependent internal friction peaks, P_3, P_2 and P_1, are found to be related closely to slant dislocation kink chains. Thus, the application of bias stress to internal friction would be contributed to studying dislocation structure.
Key words:  internal friction      bias stress      anomalous amplitude effect      dislocation      kink     
Received:  18 June 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I6/21

1 Lenz D, Edenhofer B, Luke K. Ser Metall, 1971; 5: 5
2 Vincent A, Perez J. Philos Mag, 1979; A40: 377
3 Hikata A, Truell R, Granato A, Chick B, Lucke K. J Appl Phys, 1956; 27: 396
4 Gremaud G. Thesis, Ecole Polytechnique Federale-Lausanne, Switerland, 1981
5 Alefeld G. J Appl Phys, 1965; 36: 2642
6 Baker G S. J Appl Phys, 1957; 28: 734
7 Benoit W, Fantozzi G, Esnouf C. Nuovo Cimento, 1976; 33B: 1
8 Tan Q, Ke T S. Acta Metall Mater, 1990;
9 Brailsford A D Phys Rev, 1961; 122: 778 Brailsford A D. Phys Rev, 1962; 128: 1033 Wuthrich C. Ser Metall, 1975; 9: 641
10 Lems W. Physica, 1964; 30: 1617%
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[4] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[14] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!