Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (4): 58-62    DOI:
Current Issue | Archive | Adv Search |
STRESS CORROSION PERFORMANCE OF Al-Li-Cu-Mg ALLOY
WANG Zhengfu;ZHU Ziyong;KE Wei;ZHANG Yun;HU Zhuangqi Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang; Institue of Metal Research; Academia Sinica; Shenyang
Cite this article: 

WANG Zhengfu;ZHU Ziyong;KE Wei;ZHANG Yun;HU Zhuangqi Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang; Institue of Metal Research; Academia Sinica; Shenyang. STRESS CORROSION PERFORMANCE OF Al-Li-Cu-Mg ALLOY. Acta Metall Sin, 1992, 28(4): 58-62.

Download:  PDF(641KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Studies were made of the influence of aging conditions and applied potentials onthe stress corrosion cracking (SCC) susceptibility, for an Al-Li-Cu-Mg alloy by slow strainrate technique. The relationship between the relative hydrogen content on specimen surface andthe applied potentials and elapsed time has also been examined. The SCC susceptibility wasfound to be dependent on aging conditions in which the peak aged condition gave the worstSCC resistance and the natural aged condition had the best one. The SCC susceptibility and sur-face hydrogen content are related to the applied potentials. The anodic potentials increase SCCsusceptibility, while the cathodic ones below the critical accelerate SCC. It is considered thatboth the anodic dissolution and hydrogen embrittlement contribute to SCC.
Key words:  Al-Li alloy      stress corrosion cracking      anodic dissolution      hydrogen embrittlement     
Received:  18 April 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I4/58

1 Gray A. J Phys Colloq, 1987; 48(8) : C3-891
2 Rinker J G, Marek M, Sanders T H Jr. In: Starke E A Jr., Sanders T H Jr. eds., Aluminum-Lithium Alloys Ⅱ, Proc 2nd Int Aluminum-Lithium Conf, TMS-AIME, 1984: 597
3 Braun R, Buhl H. J Phys Colloq, 1987; 48(9) : C3-843
4 Christodulou L, Struble L, Pikens J R. In: Starke E A Jr., Sanders T H Jr. eds., Aluminum-Lithium Alloys Ⅱ, Proc 2nd Int Aluminum-Lithium Conf, TMS-AIME, 1984: 561
5 Balasubramaniam R, Duquette D J. In: Sanders T H Jr,, Starke E A Jr. eds., Aluminum-Lithium Alloys, Proc 5th Int Aluminum-Lithium Conf, Williamsburg, Virginia, March 27--31, 1989, Birmingham, UK: Materials and Component Engineering, 1989: 1271
6 Ahmad M. J Phys Colloq, 1987; 48(9) : C3-871
7 张匀,刘玉林,赵洪恩,胡壮麒,朱自勇,王政富.金属学报,1991;27:B271
8 Holroyd N J H, Gray A, Scainans G M, Heramnn R. In: Baker C, Gregson P J, Harris S J, Peel C J. Proc 3rd Int Aluminum-Lithium Conf, Oxford, UK, July, 1985, London: The Institute of Metals, 1986: 310
[1] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[3] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[4] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[5] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[6] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[7] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[8] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[9] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[10] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[11] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[12] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[13] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
[14] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
[15] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
No Suggested Reading articles found!