Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (24): 545-549    DOI:
Current Issue | Archive | Adv Search |
EFFECTS OF Ti AND TiO_2 ON MICROSTRUCTURE OF IN SITU FORMED CERAMIC PARTICULATES REINFORCED Al COMPOSITES
MA Zongyi; LU Yuxiong; BI Jing(Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)
Cite this article: 

MA Zongyi; LU Yuxiong; BI Jing(Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). EFFECTS OF Ti AND TiO_2 ON MICROSTRUCTURE OF IN SITU FORMED CERAMIC PARTICULATES REINFORCED Al COMPOSITES. Acta Metall Sin, 1995, 31(24): 545-549.

Download:  PDF(390KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In situ TiB2 particulate reinforced Al(TiB2/Al) and in situ Al2O3, TiB2 particulates mixture-reinforced Al(Al2O3. TiB2/AI) composites were fabricated by reaction pressing of Ti-AI-B and TiO2-Al-B systems. It is indicated that for the Ti-Al-B system, a certain amount of Al3Ti with a size of several ten μm formed in addition to TiB2, most of the in situ formed TiB2 are block-like particulates with a size of 0.1─5.0 μm, and few TiB2 are rod-like and have an aspect ratio of greater than 4. For the TiO2-Al-B system, the formation of Al3Ti is basically inhibited, and the in situ formed Al2O3 and TiB2 are approximate equal-axial particulates with a size of 0.052.0 μm. The different microstructures of two composites are accounted for.
Key words:  composite      in situ formation      Ti-Al-B      TiO_2-Al-B     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I24/545

1WestwoodARC.Metall,1988;19A:7492KuruvillaAK,PrasadKS,BhanuprasadVV,MahajanYR.ScrMetallMater,1990:24:8733马宗义,毕敬,吕毓雄,申红伟,高荫轩.金属学报,1992:28:B4194 SahooP,KoczakMJ.MaterSciEng,1991;Al31:695王自东,李庆春,李春玉,张录山,于桂复.金属学报,1994;30:B396MaZY,LiJH,LuoM,NingXG,LuYX,BiJ.ScrMetallMater,1994;31(5):6357王德尊,刘宗荣,姚忠凯,姚枚.材料科学进展,1993;(5):45
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[9] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[10] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[11] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[12] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[15] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
No Suggested Reading articles found!