Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (11): 1689-1702    DOI: 10.11900/0412.1961.2024.00047
Research paper Current Issue | Archive | Adv Search |
Oxidation Behaviors of Zr-0.75Sn-0.35Fe-0.15Cr- xNb Alloys in High-Temperature Steam with Air
YU Qiang, XU Shitong(), ZHANG Jianan, YAO Meiyi(), HU Lijuan, XIE Yaoping, ZHOU Bangxin
Institute of Materials, Shanghai University, Shanghai 200072, China
Cite this article: 

YU Qiang, XU Shitong, ZHANG Jianan, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Oxidation Behaviors of Zr-0.75Sn-0.35Fe-0.15Cr- xNb Alloys in High-Temperature Steam with Air. Acta Metall Sin, 2025, 61(11): 1689-1702.

Download:  HTML  PDF(4697KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys are extensively utilized as fuel element materials in water-cooled nuclear reactors owing to their small thermal neutron absorption cross-section, exceptional resistance to high-temperature and high-pressure water corrosion, favorable compatibility with UO2, and moderate mechanical properties. Loss of coolant accidents (LOCAs) pose a critical risk during the operation of nuclear reactors. During such accidents, the zirconium alloy cladding may be exposed to a mixed atmosphere of air and steam, undergoing high-temperature oxidation that could compromise its structural integrity and threaten nuclear reactor safety. Therefore, understanding the oxidation behaviors of zirconium alloys in high-temperature air-steam environments is essential. This study focused on Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys (x = 0, 0.15, 0.30, 0.50, and 1.0; mass fraction, %), which were smelted and formed into plate samples. The oxidation behaviors of these alloys in a mixed atmosphere comprising 20% air and 80% steam at temperatures ranging from 800 oC to 1200 oC were investigated using a synchronous thermal analyzer under simulated LOCA conditions. The microstructure and distribution of N and O in the cross-section of the oxidized samples were examined via OM, SEM, and electron probe microanalysis coupled with wave-dispersive spectroscopy. Results indicate that the effect of Nb content on the high-temperature oxidation behavior of the zirconium alloys is complex and does not directly correlate with changes in Nb content. In general, adding Nb may reduce the high-temperature oxidation resistance of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys. The oxidation kinetics curves of the five alloys predominantly follow parabolic-linear or linear laws and display variations with changes in oxidation temperature and Nb content. In particular, oxidation transitions occur at 1000 and 1200 oC. In high-temperature steam containing air, the oxidation of zirconium alloys is considerably accelerated by the presence of N2 and O2 in air, with N serving as a “catalytic-like” agent, providing new oxidation pathways. The formation and subsequent reoxidation of ZrN contribute to the creation of porous oxide layers, undermining the protective capability of the oxide film. The changing content of Nb during the oxidation process influences the αβ phase transformation in the zirconium alloy matrix and the monoclinic (m)↔tetragonal (t) phase transformation in the oxide film. Furthermore, Nb tends to increase the O solid solubility in α-Zr, and Nb oxidation promotes cracking of the oxide film, which detrimentally affects the oxidation resistance of the zirconium alloys. Conversely, an increase in Nb content reduces anion vacancy concentration and impedes O diffusion when Nb combines with O, thereby enhancing the oxidation resistance of the zirconium alloys.

Key words:  zirconium alloy      loss of coolant accident (LOCA)      high-temperature oxidation      microstructure     
Received:  08 February 2024     
ZTFLH:  TL341  
Fund: National Natural Science Foundation of China(51871141)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00047     OR     https://www.ams.org.cn/EN/Y2025/V61/I11/1689

AlloySnFeCrNbZr
0Nb0.730.320.14-Bal.
0.15Nb0.710.310.170.12Bal.
0.30Nb0.710.310.140.28Bal.
0.50Nb0.700.310.140.48Bal.
1.0Nb0.720.310.140.97Bal.
Table 1  Composition analysis results of zirconium alloys for experiment
Fig.1  Oxidation mass gain curves of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys oxidized in air/steam mixed atmosphere
(a) 800 oC, 10800 s
(b) 1000 oC, 3600 s
(c) 1200 oC, 1800 s
T / oCAlloyTransitionTransition point / slnKnn
8000Nb--3.310.62
0.15Nb--3.290.66
0.30Nb--3.170.74
0.50Nb--2.730.94
1.0Nb--2.770.95
10000Nb--4.501.11
0.15NbBefore transition-4.021.00
First transition6661.761.92
Second transition19684.951.03
0.30NbBefore transition-4.421.11
First transition5943.511.54
Second transition13204.881.12
0.50NbBefore transition-4.531.17
First transition6963.031.79
Second transition15726.530.72
1.0NbBefore transition-4.201.09
First transition12541.821.91
Second transition21843.581.44
12000NbBefore transition-5.830.97
After transition3546.130.80
0.15NbBefore transition-6.090.98
After transition3546.460.77
0.30NbBefore transition-6.520.96
After transition3127.090.64
0.50NbBefore transition-6.080.98
After transition3126.530.72
1.0NbBefore transition-6.000.98
After transition2826.290.80
Table 2  Fitting results of oxidation kinetic parameters for Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys in air/steam mixed atmosphere at 800-1200 oC
T / oCOxide time / sF0.15NbF0.30NbF0.50NbF1.0Nb
80018003.310.622.730.6
1080039.893.8265.1303.6
10001800-2.741.391.4-1.2
360024.969.791.768.6
1200180027.744.918.012.7
Table 3  Compared to 0Nb alloy, the percentages of mass gain change for 0.15Nb, 0.30Nb, 0.50Nb, and 1.0Nb alloys oxidized in air/steam mixed atmosphere at 800-1200 oC
Fig.2  Cross-sectional OM images of 0Nb (a1-a3), 0.15Nb (b1-b3), 0.30Nb (c1-c3), 0.50Nb (d1-d3), and 1.0Nb (e1-e3) alloys after oxidation in air/steam mixed atmosphere
(a1-e1) 800 oC, 10800 s (a2-e2) 1000 oC, 3600 s (a3-e3) 1200 oC, 1800 s
Fig.3  Cross-sectional SEM images of 0Nb (a1-a3), 0.15Nb (b1-b3), 0.30Nb (c1-c3), 0.50Nb (d1-d3), and 1.0Nb (e1-e3) alloys after oxidation in air/steam mixed atmosphere
(a1-e1) 800 oC, 10800 s (a2-e2) 1000 oC, 3600 s (a3-e3) 1200 oC, 1800 s
Fig.4  Cross-sectional EPMA images and corresponding WDS element scanning maps of the 0.15Nb alloy after oxidation in air/steam mixed atmosphere at 800 oC (a), 1000 oC (b), and 1200 oC (c)
Fig.5  Oxidation mass gains of 0Nb, 0.15Nb, 0.50Nb, and 1.0Nb alloys in air/steam mixed atmosphere compared with that in N2/steam mixed atmosphere[21] and steam[19] at 1000 oC (a) and 1200 oC (b)
AlloyΔw(N2/steam)[21] / Δw(steam)[19]Δw(Air/steam) / Δw(steam)[19]
1000 oC, 3600 s1200 oC, 1800 s1000 oC, 3600 s1200 oC, 1800 s
0Nb10.23.915.13.5
0.15Nb15.33.322.33.3
0.50Nb8.43.124.13.1
1.0Nb15.93.932.13.8
Table 4  Ratios of oxidation mass gain of 0Nb, 0.15Nb, 0.50Nb, and 1.0Nb alloys in air/steam mixed atmosphere and N2/steam mixed atmosphere[21] to that in steam[19] at 1000 and 1200 oC
Reaction800 oC1000 oC1200 oCAverage
(4)-871.16-832.30-793.44-832.30
(5)-475.41-452.41-429.41-452.41
(6)-261.89-242.62-223.35-242.62
(7)-609.75-590.28-570.81-590.28
(8)-221.52-219.80-218.09-219.80
(9)-55.96-36.35-16.75-36.35
(10)-815.20-801.66-776.69-797.85
(11)-419.45-416.06-412.66-416.06
Table 5  Gibbs free energies (ΔG) of reactions (4)-(11) at 800-1200 oC
Fig.6  Schematics of high-temperature oxidation of zirconium alloy in air/steam mixed atmosphere
(a) initial stage of oxidation (b) medium stage of oxidation (c) later stage of oxidation
[1] Jia Y J, Lin X H, Zou X W, et al. Research & development history, status and prospect of zirconium alloys [J]. Mater. China, 2022, 41: 354
贾豫婕, 林希衡, 邹小伟 等. 锆合金的研发历史、现状及发展趋势 [J]. 中国材料进展, 2022, 41: 354
[2] Yao M Y. The effect of alloying composition and heat treatments on the corrosion and hydrogen uptake behaviors of zirconium alloys [D]. Shanghai: Shanghai University, 2007
姚美意. 合金成分及热处理对锆合金腐蚀和吸氢行为影响的研究 [D]. 上海: 上海大学, 2007
[3] Wang R S, Geng J Q, Weng L K, et al. Zirconium alloy cladding behaviors under LOCA condition [J]. Mater. Rep., 2011, 25(suppl.2): 501
王荣山, 耿建桥, 翁立奎 等. LOCA工况下锆合金包壳的行为概述 [J]. 材料导报, 2011, 25(): 501
[4] Lasserre M, Peres V, Pijolat M, et al. Modelling of Zircaloy-4 accelerated degradation kinetics in nitrogen-oxygen mixtures at 850 oC [J]. J. Nucl. Mater., 2015, 462: 221
[5] Steinbrück M, Miassoedov A, Schanz G, et al. Experiments on air ingress during severe accidents in LWRS [J]. Nucl. Eng. Des., 2006, 236: 1709
[6] Steinbrück M. Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures [J]. J. Nucl. Mater., 2009, 392: 531
[7] Negyesi M, Amaya M. The effect of nitride formation on the oxidation kinetics of Zry-4 fuel cladding under steam-air atmospheres at 1273-1573 K [J]. J. Nucl. Mater., 2019, 524: 263
[8] Negyesi M, Amaya M. Oxidation kinetics of Zry-4 fuel cladding in mixed steam-air atmospheres at temperatures of 1273-1473 K [J]. J. Nucl. Sci. Technol., 2017, 54: 1143
[9] Negyesi M, Amaya M. The influence of the air fraction in steam on the growth of the columnar oxide and the adjacent α-Zr(O) layer on Zry-4 fuel cladding at 1273 and 1473 K [J]. Ann. Nucl. Energy, 2018, 114: 52
[10] Steinbrück M. High-temperature reaction of oxygen-stabilized α- Zr(O) with nitrogen [J]. J. Nucl. Mater., 2014, 447: 46
[11] Zhao W J. Research on hight performance Zr alloys for nuclear industry [J]. Rare Met. Lett., 2004, 23(5): 15
赵文金. 核工业用高性能锆合金的研究 [J]. 稀有金属快报, 2004, 23(5): 15
[12] Yang Z B, Zhao W J, Cheng Z Q, et al. Effect of Nb content on the corrosion resistance of Zr-xNb-0.4Sn-0.3Fe alloys [J]. Acta Metall. Sin., 2017, 53: 47
杨忠波, 赵文金, 程竹青 等. Nb含量对Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响 [J]. 金属学报, 2017, 53: 47
[13] Huang J. Effect of Nb on the corrosion anisotropy behavior of Zr-Sn series zirconium alloys [D]. Shanghai: Shanghai University, 2018
黄 娇. Nb对Zr-Sn系锆合金腐蚀各向异性行为的影响 [D]. 上海: 上海大学, 2018
[14] Liu W Q, Li Q, Zhou B X, et al. Effect of heat treatment on the corrosion resistance for new zirconium-based alloy [J]. Nucl. Power Eng., 2005, 26: 249
刘文庆, 李 强, 周邦新 等. 热处理制度对N18新锆合金耐腐蚀性能的影响 [J]. 核动力工程, 2005, 26: 249
[15] Arima T, Miyata K, Idemitsu K, et al. Oxidation properties of Zr-Nb alloys at 973-1273 K in air [J]. Prog. Nucl. Energy, 2009, 51: 307
[16] Lin Y C. Conventional corrosion behavior and high temperature steam oxidation behavior under simulated LOCA for Zr-xNb-yM alloys [D]. Shanghai: Shanghai University, 2020
林雨晨. Zr-xNb-yM (M = Fe, Cr)合金的常规腐蚀行为及模拟LOCA下的高温蒸汽氧化行为研究 [D]. 上海: 上海大学, 2020
[17] Baek J H, Park K B, Jeong Y H. Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200 oC [J]. J. Nucl. Mater., 2004, 335: 443
[18] Liu Y Z, Qiu J, Liu X, et al. Oxidation kinetics of N18 zirconium alloy at temperatures of 600-1200 oC in steam [J]. Nucl. Power Eng., 2010, 31(2): 85
刘彦章, 邱 军, 刘 欣 等. N18锆合金在600~1200 ℃蒸汽中的氧化行为研究 [J]. 核动力工程, 2010, 31(2): 85
[19] Zhang J N, Yao M Y, Zha X P, et al. Effect of Nb addition on high temperature steam oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy [J]. Rare Met. Mater. Eng., 2022, 51: 1837
张佳楠, 姚美意, 查学鹏 等. 添加Nb对Zr-0.75Sn-0.35Fe-0.15Cr合金高温蒸汽氧化行为的影响 [J]. 稀有金属材料与工程, 2022, 51: 1837
[20] Yao M Y, Zhou B X, Li Q, et al. A superior corrosion behavior of Zircaloy-4 in lithiated water at 360 oC/18.6 MPa by β-quenching [J]. J. Nucl. Mater., 2008, 374: 197
[21] Zhang J N. High temperature steam oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys in nitrogen-containing atmosphere [D]. Shanghai: Shanghai University, 2021
张佳楠. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金在含氮气氛下高温蒸汽氧化行为研究 [D]. 上海: 上海大学, 2021
[22] Steinbrück M, Böttcher M. Air oxidation of Zircaloy-4, M5® and ZIRLO™ cladding alloys at high temperatures [J]. J. Nucl. Mater., 2011, 414: 276
[23] Stuckert J, Steinbrück M. Experimental results of the QUENCH-16 bundle test on air ingress [J]. Prog. Nucl. Energy, 2014, 71: 134
[24] Zhao W Q, Wei T G, Liao J J, et al. High-temperature oxidation behavior of Zr-4 and Zr-Sn-Nb alloy in different oxidation ambient [J]. J. Alloys Compd., 2021, 887: 161396
[25] Steinbrück M, Schaffer S. High-temperature oxidation of Zircaloy-4 in oxygen-nitrogen mixtures [J]. Oxid. Met., 2016, 85: 245
[26] Zhang F, Hu L J, Lin Y C, et al. High temperature steam oxidation behavior of Zr-xNb-yCr alloys [J]. Rare Met. Mater. Eng., 2024, 53: 1666
张 风, 胡丽娟, 林雨晨 等. Zr-xNb-yCr合金在模拟失水事故下的高温蒸汽氧化行为 [J]. 稀有金属材料与工程, 2024, 53: 1666
[27] Chiang T W, Chernatynskiy A, Noordhoek M J, et al. Anisotropy in oxidation of zirconium surfaces from density functional theory calculations [J]. Comput. Mater. Sci., 2015, 98: 112
[28] Noordhoek M J, Liang T, Chiang T W, et al. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials [J]. J. Nucl. Mater., 2014, 452: 285
[29] Urbanic V F, Heidrick T R. High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam [J]. J. Nucl. Mater., 1978, 75: 251
[30] Ackermann O R J, Garg S P, Rauh E G. High-temperature phase diagram for the system Zr-O [J]. J. Am. Ceram. Soc., 1977, 60: 341
[31] Ma S C, Sun Y Z, Chen W C, et al. Study of fuel cladding-steam reaction under a loss of coolant-accident (LOCA) [J]. At. Energy Sci. Technol., 1993, 27: 376
马树春, 孙源珍, 陈望春 等. PWR失水事故工况下燃料包壳与水蒸汽反应研究 [J]. 原子能科学技术, 1993, 27: 376
[32] Gribaudo L, Arias D, Abriata J. The N-Zr (nitrogen-zirconium) system [J]. J. Phase Equilib., 1994, 15: 441
[33] Ma X, Toffolon-Masclet C, Guilbert T, et al. Oxidation kinetics and oxygen diffusion in low-tin Zircaloy-4 up to 1523 K [J]. J. Nucl. Mater., 2008, 377: 359
[34] Li M L. Concise Handbook of Chemical Data [M]. Beijing: Chemical Industry Press, 2003: 179
李梦龙. 化学数据速查手册 [M]. 北京: 化学工业出版社, 2003: 179
[35] Li T F. High Temperature Oxidation and Thermal Corrosion in Metals [M]. Beijing: Chemical Industry Press, 2003: 18
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 18
[36] Huang J S, Pei W, Xu S T, et al. Degradation mechanism on corrosion resistance of high Nb-containing zirconium alloys in oxygen-containing steam [J]. Acta Metall. Sin., 2024, 60: 509
黄建松, 裴 文, 徐诗彤 等. 高Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理 [J]. 金属学报, 2024, 60: 509
[37] Grosse M, Roessger C, Stuckert J, et al. Neutron imaging investigations of the secondary hydriding of nuclear fuel cladding alloys during loss of coolant accidents [J]. Physics Procedia, 2015, 69: 436
[38] Yuan R, Xie Y P, Li T, et al. An origin of corrosion resistance changes of Zr alloys: Effects of Sn and Nb on grain boundary strength of surface oxide [J]. Acta Mater., 2021, 209: 116804
[1] WANG Hongying, YAO Zhihao, LI Dayu, GUO Jing, YAO Kaijun, DONG Jianxin. Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys[J]. 金属学报, 2025, 61(9): 1364-1374.
[2] XIAO Wenlong, ZANG Chenyang, GUO Jintao, FENG Jiawen, MA Chaoli. Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. 金属学报, 2025, 61(8): 1153-1164.
[3] WU Zewei, YAN Junxiong, HU Li, HAN Xiuzhu. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. 金属学报, 2025, 61(8): 1165-1173.
[4] XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. 金属学报, 2025, 61(7): 998-1010.
[5] SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. 金属学报, 2025, 61(7): 1011-1023.
[6] WANG Qiang, LI Xiaobing, HAO Junjie, CHEN Bo, ZHANG Bin, ZHANG Erlin, LIU Kui. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. 金属学报, 2025, 61(7): 1060-1070.
[7] LI Dayu, YAO Zhihao, ZHAO Jie, DONG Jianxin, GUO Jing, ZHAO Yu. Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions[J]. 金属学报, 2025, 61(6): 826-836.
[8] HAO Xubang, CHENG Weili, LI Jian, WANG Lifei, CUI Zeqin, YAN Guoqing, ZHAI Kai, YU Hui. Electrochemical Behavior and Discharge Performance of a Low-Alloyed Mg-Ag Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2025, 61(6): 837-847.
[9] LIU Ziru, GUO Qianying, ZHANG Hongyu, LIU Yongchang. Effects of V on the Microstructure Evolution and Hardness Enhancement of Ti2AlNb Alloy[J]. 金属学报, 2025, 61(6): 848-856.
[10] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
[11] ZHOU Renyuan, ZHU Lihui. Formation of γ′-Denuded Zone and Its Effect on the Mechanical Properties of Inconel 740H Welded Joint After Creep at Different Temperatures[J]. 金属学报, 2025, 61(5): 744-756.
[12] YANG Minghui, LI Xingwu, SUN Chonghao, RUAN Ying. Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing[J]. 金属学报, 2025, 61(4): 561-571.
[13] JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings[J]. 金属学报, 2025, 61(3): 383-396.
[14] HUANG Ke, LI Xinzhi, FANG Xuewei, LU Bingheng. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 397-419.
[15] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
No Suggested Reading articles found!