|
|
Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping |
JIANG Zhaohan1, QIU Wenting1, GONG Shen1,2( ), LI Zhou1,2 |
1School of Materials Science and Engineering, Central South University, Changsha 410083, China 2State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
Cite this article:
JIANG Zhaohan, QIU Wenting, GONG Shen, LI Zhou. Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping. Acta Metall Sin, 2024, 60(3): 287-298.
|
Abstract With the development of industry, people pay more and more attention to the hazards of vibration and noise in various fields. Besides adopting various vibration-reduction technologies, the demand for high-performance damping materials is also increasing to reduce vibration and noise. Among them, damping composites combine the advantages of different damping materials and superimpose multiple mechanisms to integrate their functions and structures, obtaining damping materials with excellent comprehensive performance. Herein, a novel damping composite was prepared using the sintering evaporation method and vacuum infiltration. This composite adopts the porous CuAlMn shape memory alloy as the skeleton, whose pores are filled with a composite composed of carbon nanotubes loaded with HfO2 particles and a viscoelastic polymer. Uniaxial compression test at room temperature and dynamic mechanical analysis were carried out on composite samples. The results show that when porosity of the skeleton is 80% and the mass fraction of carbon nanotubes is 1%, the compressive yield strength and elastic modulus of the composite are 27 MPa and 1040 MPa, respectively, and its density is only 2.11 g/cm3. Its loss factor is > 0.055 in the range of 0.1-200 Hz and 20-100oC, and its maximum value can reach 0.102. The elastic modulus, compressive yield strength, and loss factor of this composite increased by 1, 2, and 1.5 times, respectively, compared to those of the CuAlMn skeleton with same porosity. A three-phase model was utilized to analyze the damping mechanism of composite samples. The calculation results show that the primary damping mechanism of the proposed novel composite is interface damping.
|
Received: 05 May 2022
|
|
Fund: National Key Research and Development Program of China(2021YFB3501003);National Natural Science Foundation of China(52271125);National Defense Pre-Research Foundation of China(61402100105) |
Corresponding Authors:
GONG Shen, professor, Tel: 13786289378, E-mail: gongshen011@csu.edu.cn
|
1 |
Zhang R D, Zhao J L. Damping material of reducing vibration and noise and its application [J]. Shanghai Met., 2002, 24(2): 18
|
|
张人德, 赵钧良. 减振降噪阻尼材料及其应用 [J]. 上海金属, 2002, 24(2): 18
|
2 |
Liu R, Sun H L, Liu X L, et al. Effect of Gd on microstructure, mechanical properties and damping properties of Fe-Cr-Al alloys [J]. Mater. Charact., 2022, 187: 111841
doi: 10.1016/j.matchar.2022.111841
|
3 |
Li Z Z, Yan H G, Chen J H, et al. Enhancing damping capacity and mechanical properties of Al-Mg alloy by high strain rate hot rolling and subsequent cold rolling [J]. J. Alloys Compd., 2022, 908: 164677
doi: 10.1016/j.jallcom.2022.164677
|
4 |
Wang S H, Li J, Chai F, et al. Influence of solution temperature on γ→ε transformation and damping capacity of Fe-19Mn Alloy [J]. Acta Metall. Sin., 2020, 56: 1217
|
|
王世宏, 李 健, 柴 锋 等. 固溶温度对Fe-19Mn合金的γ→ε相变和阻尼性能的影响 [J]. 金属学报, 2020, 56: 1217
doi: 10.11900/0412.1961.2020.00005
|
5 |
Hufenus R, Gottardo L, Leal A A, et al. Melt-spun polymer fibers with liquid core exhibit enhanced mechanical damping [J]. Mater. Des., 2016, 110: 685
doi: 10.1016/j.matdes.2016.08.042
|
6 |
Xu Z P, Ha C S, Kadam R, et al. Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices [J]. Addit. Manuf., 2020, 32: 101106
|
7 |
Feng Q, Shen M L, Zhu J M, et al. Realization of polyurethane/epoxy interpenetrating polymer networks with a broad high-damping temperature range using β-cyclodextrins as chain extenders [J]. Mater. Des., 2021, 212: 110208
doi: 10.1016/j.matdes.2021.110208
|
8 |
Wang Y B, Jiang H J, Liu C Y, et al. Influence of Al particle layer on damping behavior of Alp/7075Al composites fabricated by hot rolling [J]. J. Alloys Compd., 2021, 882: 160763
doi: 10.1016/j.jallcom.2021.160763
|
9 |
Jiao Z X, Wang Q Z, Yin F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties [J]. Carbon, 2022, 188: 45
doi: 10.1016/j.carbon.2021.11.055
|
10 |
Yao Y T, Chen L Q, Wang W G. Damping capacities of (B4C+Ti) hybrid reinforced Mg and AZ91D composites processed by in situ reactive infiltration technique [J]. Acta. Metall. Sin., 2019, 55: 141
|
|
姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能 [J]. 金属学报, 2019, 55: 141
doi: 10.11900/0412.1961.2018.00108
|
11 |
Feng Z X, Han F, Feng M, et al. Effects of constrained layer damping patches on the sound insulation characteristics of aircraft panels [J]. Noise Vibrat. Control, 2016, 36(3): 76
|
|
冯梓鑫, 韩 峰, 冯 盟 等. 约束层阻尼对飞机壁板隔声特性的影响 [J]. 噪声与振动控制, 2016, 36(3): 76
doi: 10.3969/j.issn.1006-1335.2016.03.016
|
12 |
Wang Y, Liu Z M, Li S Q, et al. Vibration temperature-increase research of viscoelastic material applied on constrained damping vibration isolator [J]. J. Vib. Eng., 2010, 23: 585
|
|
王 跃, 刘志敏, 李世其 等. 约束阻尼型隔振器粘弹材料振动温升研究 [J]. 振动工程学报, 2010, 23: 585
|
13 |
Wang G Q. Vibration and noise reduction research on ocean engineering bulkhead structure [D]. Qingdao: Ocean University of China, 2013
|
|
王国庆. 海洋工程舱壁结构减振降噪问题研究 [D]. 青岛: 中国海洋大学, 2013
|
14 |
Sil A, Sharma R, Ray S. Mechanical and thermal characteristics of PMMA-based nanocomposite gel polymer electrolytes with CNFs dispersion [J]. Surf. Coat. Technol., 2015, 271: 201
doi: 10.1016/j.surfcoat.2014.12.036
|
15 |
Toyoda N, Yamamoto T. Dispersion of carbon nanofibers modified with polymer colloids to enhance mechanical properties of PVA nanocomposite film [J]. Colloids Surf., 2018, 556A: 248
|
16 |
Mlyniec A, Korta J, Kudelski R, et al. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites [J]. Compos. Struct., 2014, 118: 208
doi: 10.1016/j.compstruct.2014.07.047
|
17 |
Ma M. Preparation and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT as rigid piezo-damping materials [D]. Beijing: Beijing University of Chemical Technology, 2009
|
|
马 敏. 碳纳米管/铌镁锆钛酸铅/环氧树脂基压电阻尼材料的制备及性能研究 [D]. 北京: 北京化工大学, 2009
|
18 |
Xu P, Yang K, Yu Y H. Research on damping property of foam aluminum-epoxy resin composite [J]. Hot Work. Technol., 2013, 42: 110
|
|
徐 平, 杨 昆, 于英华. 泡沫铝/环氧树脂复合材料阻尼性能的研究 [J]. 热加工工艺, 2013, 42: 110
|
19 |
Chen M, Jiang H, Wang Y R, et al. Study on the effect of metallic foam on the sound absorption properties of phononic glass [A]. 14th Symposium on Underwater Noise of Ships [C]. 2013-08-22, Chongqing, China Ship Science Research Center, 2013: 553
|
|
陈 猛, 姜 恒, 王育人 等. 泡沫金属对声子玻璃吸声性能的影响研究 [A]. 第十四届船舶水下噪声学讨论会 [C]. 2013-08-22, 重庆, 2013: 553
|
20 |
Gong S, Li Z, Xu G Y, et al. Fabrication, microstructure and property of cellular CuAlMn shape memory alloys produced by sintering-evaporation process [J]. J. Alloys Compd., 2011, 509: 2924
doi: 10.1016/j.jallcom.2010.11.157
|
21 |
Wang C, Jia J R. Damping and mechanical properties of polyol cross-linked polyurethane/epoxy interpenetrating polymer networks [J]. High Perform. Polym., 2014, 26: 240
doi: 10.1177/0954008313508421
|
22 |
Li Z, Wang M P, Xu G Y, et al. The martensite structure and its variation during aging in Cu-Al-Mn alloy [J]. Trans. Mater. Heat Treat., 2002, 23(2): 16
|
|
李 周, 汪明朴, 徐根应 等. Cu-Al-Mn合金马氏体结构及其在时效过程中的变化 [J]. 材料热处理学报, 2002, 23(2): 16
|
23 |
Wang Q Z, Han F S, Wu J, et al. Damping behavior of porous CuAlMn shape memory alloy [J]. Mater. Lett., 2007, 61: 2598
doi: 10.1016/j.matlet.2006.10.007
|
24 |
Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535
doi: 10.1016/j.actamat.2009.12.040
|
25 |
Bertrand E, Castany P, Gloriant T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy [J]. Acta Mater., 2013, 61: 511
doi: 10.1016/j.actamat.2012.09.065
|
26 |
Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications [J]. Mater. Des., 2016, 108: 136
doi: 10.1016/j.matdes.2016.06.080
|
27 |
Ji X W, Wang Q Z, Yin F X, et al. Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites [J]. Composites, 2018, 107A: 21
|
28 |
Brandes E A, Brook G. Smithells Metals Reference Book [M]. Oxford Boston: Butterworth-Heinemann, 2013: 15
|
29 |
Zhang J, Perez R J, Lavernia E J. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials [J]. J. Mater. Sci., 1993, 28: 2395
doi: 10.1007/BF01151671
|
30 |
San Juan J, Nó M L. Damping behavior during martensitic transformation in shape memory alloys [J]. J. Alloys Compd., 2003, 355: 65
doi: 10.1016/S0925-8388(03)00277-9
|
31 |
Zheng X H, Ning R, Duan J T, et al. Martensitic transformation and damping behavior of Ti70 - x Ta15Zr15Fe x (x = 0.3, 0.6, 1.0) shape memory thin films [J]. Acta Metall. Sin., 2020, 56: 1690
|
|
郑晓航, 宁 睿, 段佳彤 等. Ti70 - x Ta15Zr15Fe x (x = 0.3, 0.6, 1.0)形状记忆合金薄膜的马氏体相变与阻尼行为 [J]. 金属学报, 2020, 56: 1690
doi: 10.11900/0412.1961.2020.00155
|
32 |
Jiang Z H, Cai H Y, Chen X L, et al. Improving the mechanical and damping properties of polymer/memory alloy composite by introducing nanotubes covered with nano-scale Ni particles [J]. Composites, 2022, 156A: 106856
|
33 |
Ajayan P M, Suhr J, Koratkar N. Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping [J]. J. Mater. Sci., 2006, 41: 7824
doi: 10.1007/s10853-006-0693-4
|
34 |
Mahmoodi M J, Vakilifard M. Interfacial effects on the damping properties of general carbon nanofiber reinforced nanocomposites—A multi-stage micromechanical analysis [J]. Compos. Struct., 2018, 192: 397
doi: 10.1016/j.compstruct.2018.03.012
|
35 |
Yan N J. Structure and properties of the porous CuAlMn shape memory alloys [D]. Tianjin: Hebei University of Technology, 2013
|
|
闫娜君. 多孔CuAlMn形状记忆合金的结构、性能研究 [D]. 天津: 河北工业大学, 2013
|
36 |
Li D S, Zhang X P, Xiong Z P, et al. Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength [J]. J. Alloys Compd., 2010, 490: L15
doi: 10.1016/j.jallcom.2009.10.025
|
37 |
Papanicolaou G C, Paipetis S A, Theocaris P S. The concept of boundary interphase in composite mechanics [J]. Colloid. Polym. Sci., 1978, 256: 625
doi: 10.1007/BF01784402
|
38 |
Theocaris P S, Papanicolaou G C. The effect of the boundary interphase on the thermomechanical behaviour of composites reinforced with short fibres [J]. Fibre Sci. Technol., 1979, 12: 421
doi: 10.1016/0015-0568(79)90016-2
|
39 |
Drzal L. Composite interphase characterization [J]. SAMPE J., 1983, 19: 7
|
40 |
Chaturvedi S K, Tzeng G Y. Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites [J]. Compos. Eng., 1991, 1: 49
doi: 10.1016/0961-9526(91)90025-N
|
41 |
Bao W X, Zhu C C, Cui W Z. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics [J]. Physics, 2004, 352B: 156
|
42 |
Scarpa F, Adhikari S, Phani A S. Effective elastic mechanical properties of single layer graphene sheets [J]. Nanotechnology, 2009, 20: 065709
|
43 |
Jiang Z H, Wang F M J, Yin J L, et al. Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites [J]. Composites, 2020, 199B: 108266
|
44 |
Li B, Wei Y L, Meng F C, et al. Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators [J]. Superlatt. Microstruct., 2020, 139: 106420
doi: 10.1016/j.spmi.2020.106420
|
45 |
Sazonova V, Yaish Y, Üstünel H, et al. A tunable carbon nanotube electromechanical oscillator [J]. Nature, 2004, 431: 284
doi: 10.1038/nature02905
|
46 |
Qian D, Zhou Z. Visco-elastic properties of carbon nanotubes and their relation to damping [A]. Time Dependent Constitutive Behavior and Fracture/Failure Processes, Vol.3 [M]. New York: Springer, 2011: 259
|
47 |
Patel R K, Bhattacharya B, Basu S. Effect of interphase properties on the damping response of polymer nano-composites [J]. Mech. Res. Commun., 2008, 35: 115
doi: 10.1016/j.mechrescom.2007.08.005
|
48 |
Wang K F, Okuno K, Banu M, et al. Vibration-based identification of interphase properties in long fiber reinforced composites [J]. Compos. Struct., 2017, 174: 244
doi: 10.1016/j.compstruct.2017.04.018
|
49 |
Pathan M V, Tagarielli V L, Patsias S. Effect of fibre shape and interphase on the anisotropic viscoelastic response of fibre composites [J]. Compos. Struct., 2017, 162: 156
doi: 10.1016/j.compstruct.2016.11.046
|
50 |
Vantomme J. A parametric study of material damping in fibre-reinforced plastics [J]. Composites, 1995, 26: 147
doi: 10.1016/0010-4361(95)90415-V
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|