Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping
JIANG Zhaohan1, QIU Wenting1, GONG Shen1,2(), LI Zhou1,2
1School of Materials Science and Engineering, Central South University, Changsha 410083, China 2State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Cite this article:
JIANG Zhaohan, QIU Wenting, GONG Shen, LI Zhou. Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping. Acta Metall Sin, 2024, 60(3): 287-298.
With the development of industry, people pay more and more attention to the hazards of vibration and noise in various fields. Besides adopting various vibration-reduction technologies, the demand for high-performance damping materials is also increasing to reduce vibration and noise. Among them, damping composites combine the advantages of different damping materials and superimpose multiple mechanisms to integrate their functions and structures, obtaining damping materials with excellent comprehensive performance. Herein, a novel damping composite was prepared using the sintering evaporation method and vacuum infiltration. This composite adopts the porous CuAlMn shape memory alloy as the skeleton, whose pores are filled with a composite composed of carbon nanotubes loaded with HfO2 particles and a viscoelastic polymer. Uniaxial compression test at room temperature and dynamic mechanical analysis were carried out on composite samples. The results show that when porosity of the skeleton is 80% and the mass fraction of carbon nanotubes is 1%, the compressive yield strength and elastic modulus of the composite are 27 MPa and 1040 MPa, respectively, and its density is only 2.11 g/cm3. Its loss factor is > 0.055 in the range of 0.1-200 Hz and 20-100oC, and its maximum value can reach 0.102. The elastic modulus, compressive yield strength, and loss factor of this composite increased by 1, 2, and 1.5 times, respectively, compared to those of the CuAlMn skeleton with same porosity. A three-phase model was utilized to analyze the damping mechanism of composite samples. The calculation results show that the primary damping mechanism of the proposed novel composite is interface damping.
Fund: National Key Research and Development Program of China(2021YFB3501003);National Natural Science Foundation of China(52271125);National Defense Pre-Research Foundation of China(61402100105)
Corresponding Authors:
GONG Shen, professor, Tel: 13786289378, E-mail: gongshen011@csu.edu.cn
Fig.1 Schematic of preparation process of HfO2@CNT/polymer/CuAlMn composite (The abbreviations CNT and SMA represent carbon nanotube and shape memory alloy, respectively)
Simplified representation
Alloy skeleton
Polymer matrix
Carbon nanomaterials dispersed in polymer
Porous CuAlMn SMA
CuAlMn
Polymer/CuAlMn
CuAlMn
EP/PU
CNF/polymer/CuAlMn
CuAlMn
EP/PU
CNFs
CNT/polymer/CuAlMn
CuAlMn
EP/PU
CNTs
HfO2@CNT/polymer/CuAlMn
CuAlMn
EP/PU
HfO2@CNTs
Table 1 Simplified representation and composition of materials
Fig.2 SEM images of quenched porous CuAlMn SMA (a, b) and polymer/CuAlMn composite (c); XRD spectrum of quenched porous CuAlMn SMA at room temperature (M—martensite with M18R structure) (d); TEM images of the areas away from pores (e) and around pores (f), and typical twin martensite (g) of quenched porous CuAlMn SMA; HRTEM image (h) and SAED pattern (i) of the area I in Fig.2g
Fig.3 TEM images of CNFs (a), CNTs (b), and HfO2@CNTs (c); XRD spectra of CNTs and HfO2@CNTs at room temperature (d); STEM image (e), STEM-HAADF image and EDS scanning results of HfO2@CNTs (f); SEM images of CNF/polymer/CuAlMn (g), CNT/polymer/CuAlMn (h), and HfO2@CNT/polymer/CuAlMn (i) composites
Fig.4 Curves of five materials' loss factors and storage moduli with frequency at room temperature (a) and temperature at 100 Hz (b); temperature dependence curves of loss factors and storage moduli of porous CuAlMn SMA (c), CNT/polymer/CuAlMn (d), and HfO2@CNT/polymer/CuAlMn (e) at 1, 10, and 100 Hz; compressive stress-strain curves at room temperature of five materials (f)
Sample
Density
g·cm-3
Yield strength
MPa
Elastic modulus
MPa
Loss factor (25oC, 200 Hz)
Porous CuAlMn SMA
1.43
9
642
0.058
Polymer/CuAlMn
1.98
24
862
0.067
CNF/polymer/CuAlMn
2.06
30
1029
0.068
CNT/polymer/CuAlMn
2.05
26
907
0.088
HfO2@CNT/polymer/CuAlMn
2.11
27
1040
0.102
Table 2 Comprehensive properties of five materials
Fig.5 Comparisons of damping performance (room temperature, low frequency vibration) and density of five materials with various commonly used alloys[23,28,29] (Gr.C—graphite C, BS—British standard, DTD—a British alloy brand)
Fig.6 Schematic of the three-phase model (Ri—radius of interface transition zone, Rf —radius of filler, lf—length of filler, ηf—loss factor of filler, ηi—loss factor of interface transition zone, ηm—loss factor of matrix)
Parameter
Symbol
Ref.
Sim. value
Elastic modulus of CuAlMn SMA
ECuAlMn
[32]
20 GPa
Elastic modulus of polymer
Em
[32]
127 MPa
Elastic moduli of CNFs, CNTs, and HfO2@CNTs
Ef
[41,42]
1000 GPa
Radius of HfO2 nanoparticles
1 nm
Radii of CNFs and CNTs
rf
[43]
75 nm, 7.5 nm
Lengths of CNFs and CNTs
lf
[43]
15 μm, 1.5 μm
Volume ratio of HfO2 nanoparticles to CNTs
30%
Loss factor of CuAlMn SMA
ηCuAlMn
[23]
0.0094
Loss factor of polymer
ηm
[32]
0.0662
Loss factors of CNFs, CNTs, and HfO2@CNTs
ηf
[40,44-46]
0.0018
Loss factor of macroscopic and microscopic interface transition zone
ηi
[47-49]
0.50
Table 3 Physical parameters of materials[23,32,40-49]
Sample
Total interface area (relative value)
Experimental value of loss factor
Calculated value of loss factor
Porous CuAlMn SMA
1.0
0.0422
0.0436
Polymer/CuAlMn
1.0
0.0592
0.0590
CNF/polymer/CuAlMn
18.3
0.0577
0.0611
CNT/polymer/CuAlMn
172.2
0.0782
0.0807
HfO2@CNT/polymer/CuAlMn
265.7
0.0877
0.0896
Table 4 Total interface areas, experimental and calculated values of five materials' loss factors
Sample
CuAlMn SMA
Macroscopic interface
Polymer
Microscopic interface
Filler
Porous CuAlMn SMA
23.04
76.96
-
-
-
Polymer/CuAlMn
13.90
77.78
8.32
-
-
CNF/polymer/CuAlMn
13.02
72.27
5.18
8.40
1.13
CNT/polymer/CuAlMn
9.67
45.29
5.13
38.86
1.05
HfO2@CNT/polymer/CuAlMn
7.60
40.09
4.58
46.87
0.86
Table 5 Proportions of strain energy dissipation of each damping term in five materials
1
Zhang R D, Zhao J L. Damping material of reducing vibration and noise and its application [J]. Shanghai Met., 2002, 24(2): 18
张人德, 赵钧良. 减振降噪阻尼材料及其应用 [J]. 上海金属, 2002, 24(2): 18
2
Liu R, Sun H L, Liu X L, et al. Effect of Gd on microstructure, mechanical properties and damping properties of Fe-Cr-Al alloys [J]. Mater. Charact., 2022, 187: 111841
doi: 10.1016/j.matchar.2022.111841
3
Li Z Z, Yan H G, Chen J H, et al. Enhancing damping capacity and mechanical properties of Al-Mg alloy by high strain rate hot rolling and subsequent cold rolling [J]. J. Alloys Compd., 2022, 908: 164677
doi: 10.1016/j.jallcom.2022.164677
4
Wang S H, Li J, Chai F, et al. Influence of solution temperature on γ→ε transformation and damping capacity of Fe-19Mn Alloy [J]. Acta Metall. Sin., 2020, 56: 1217
Hufenus R, Gottardo L, Leal A A, et al. Melt-spun polymer fibers with liquid core exhibit enhanced mechanical damping [J]. Mater. Des., 2016, 110: 685
doi: 10.1016/j.matdes.2016.08.042
6
Xu Z P, Ha C S, Kadam R, et al. Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices [J]. Addit. Manuf., 2020, 32: 101106
7
Feng Q, Shen M L, Zhu J M, et al. Realization of polyurethane/epoxy interpenetrating polymer networks with a broad high-damping temperature range using β-cyclodextrins as chain extenders [J]. Mater. Des., 2021, 212: 110208
doi: 10.1016/j.matdes.2021.110208
8
Wang Y B, Jiang H J, Liu C Y, et al. Influence of Al particle layer on damping behavior of Alp/7075Al composites fabricated by hot rolling [J]. J. Alloys Compd., 2021, 882: 160763
doi: 10.1016/j.jallcom.2021.160763
9
Jiao Z X, Wang Q Z, Yin F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties [J]. Carbon, 2022, 188: 45
doi: 10.1016/j.carbon.2021.11.055
10
Yao Y T, Chen L Q, Wang W G. Damping capacities of (B4C+Ti) hybrid reinforced Mg and AZ91D composites processed by in situ reactive infiltration technique [J]. Acta. Metall. Sin., 2019, 55: 141
Feng Z X, Han F, Feng M, et al. Effects of constrained layer damping patches on the sound insulation characteristics of aircraft panels [J]. Noise Vibrat. Control, 2016, 36(3): 76
Wang Y, Liu Z M, Li S Q, et al. Vibration temperature-increase research of viscoelastic material applied on constrained damping vibration isolator [J]. J. Vib. Eng., 2010, 23: 585
Wang G Q. Vibration and noise reduction research on ocean engineering bulkhead structure [D]. Qingdao: Ocean University of China, 2013
王国庆. 海洋工程舱壁结构减振降噪问题研究 [D]. 青岛: 中国海洋大学, 2013
14
Sil A, Sharma R, Ray S. Mechanical and thermal characteristics of PMMA-based nanocomposite gel polymer electrolytes with CNFs dispersion [J]. Surf. Coat. Technol., 2015, 271: 201
doi: 10.1016/j.surfcoat.2014.12.036
15
Toyoda N, Yamamoto T. Dispersion of carbon nanofibers modified with polymer colloids to enhance mechanical properties of PVA nanocomposite film [J]. Colloids Surf., 2018, 556A: 248
16
Mlyniec A, Korta J, Kudelski R, et al. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites [J]. Compos. Struct., 2014, 118: 208
doi: 10.1016/j.compstruct.2014.07.047
17
Ma M. Preparation and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT as rigid piezo-damping materials [D]. Beijing: Beijing University of Chemical Technology, 2009
Chen M, Jiang H, Wang Y R, et al. Study on the effect of metallic foam on the sound absorption properties of phononic glass [A]. 14th Symposium on Underwater Noise of Ships [C]. 2013-08-22, Chongqing, China Ship Science Research Center, 2013: 553
Gong S, Li Z, Xu G Y, et al. Fabrication, microstructure and property of cellular CuAlMn shape memory alloys produced by sintering-evaporation process [J]. J. Alloys Compd., 2011, 509: 2924
doi: 10.1016/j.jallcom.2010.11.157
21
Wang C, Jia J R. Damping and mechanical properties of polyol cross-linked polyurethane/epoxy interpenetrating polymer networks [J]. High Perform. Polym., 2014, 26: 240
doi: 10.1177/0954008313508421
22
Li Z, Wang M P, Xu G Y, et al. The martensite structure and its variation during aging in Cu-Al-Mn alloy [J]. Trans. Mater. Heat Treat., 2002, 23(2): 16
Wang Q Z, Han F S, Wu J, et al. Damping behavior of porous CuAlMn shape memory alloy [J]. Mater. Lett., 2007, 61: 2598
doi: 10.1016/j.matlet.2006.10.007
24
Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535
doi: 10.1016/j.actamat.2009.12.040
25
Bertrand E, Castany P, Gloriant T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy [J]. Acta Mater., 2013, 61: 511
doi: 10.1016/j.actamat.2012.09.065
26
Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications [J]. Mater. Des., 2016, 108: 136
doi: 10.1016/j.matdes.2016.06.080
27
Ji X W, Wang Q Z, Yin F X, et al. Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites [J]. Composites, 2018, 107A: 21
28
Brandes E A, Brook G. Smithells Metals Reference Book [M]. Oxford Boston: Butterworth-Heinemann, 2013: 15
29
Zhang J, Perez R J, Lavernia E J. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials [J]. J. Mater. Sci., 1993, 28: 2395
doi: 10.1007/BF01151671
30
San Juan J, Nó M L. Damping behavior during martensitic transformation in shape memory alloys [J]. J. Alloys Compd., 2003, 355: 65
doi: 10.1016/S0925-8388(03)00277-9
31
Zheng X H, Ning R, Duan J T, et al. Martensitic transformation and damping behavior of Ti70 - x Ta15Zr15Fe x (x = 0.3, 0.6, 1.0) shape memory thin films [J]. Acta Metall. Sin., 2020, 56: 1690
Jiang Z H, Cai H Y, Chen X L, et al. Improving the mechanical and damping properties of polymer/memory alloy composite by introducing nanotubes covered with nano-scale Ni particles [J]. Composites, 2022, 156A: 106856
33
Ajayan P M, Suhr J, Koratkar N. Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping [J]. J. Mater. Sci., 2006, 41: 7824
doi: 10.1007/s10853-006-0693-4
34
Mahmoodi M J, Vakilifard M. Interfacial effects on the damping properties of general carbon nanofiber reinforced nanocomposites—A multi-stage micromechanical analysis [J]. Compos. Struct., 2018, 192: 397
doi: 10.1016/j.compstruct.2018.03.012
35
Yan N J. Structure and properties of the porous CuAlMn shape memory alloys [D]. Tianjin: Hebei University of Technology, 2013
闫娜君. 多孔CuAlMn形状记忆合金的结构、性能研究 [D]. 天津: 河北工业大学, 2013
36
Li D S, Zhang X P, Xiong Z P, et al. Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength [J]. J. Alloys Compd., 2010, 490: L15
doi: 10.1016/j.jallcom.2009.10.025
37
Papanicolaou G C, Paipetis S A, Theocaris P S. The concept of boundary interphase in composite mechanics [J]. Colloid. Polym. Sci., 1978, 256: 625
doi: 10.1007/BF01784402
38
Theocaris P S, Papanicolaou G C. The effect of the boundary interphase on the thermomechanical behaviour of composites reinforced with short fibres [J]. Fibre Sci. Technol., 1979, 12: 421
doi: 10.1016/0015-0568(79)90016-2
Chaturvedi S K, Tzeng G Y. Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites [J]. Compos. Eng., 1991, 1: 49
doi: 10.1016/0961-9526(91)90025-N
41
Bao W X, Zhu C C, Cui W Z. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics [J]. Physics, 2004, 352B: 156
42
Scarpa F, Adhikari S, Phani A S. Effective elastic mechanical properties of single layer graphene sheets [J]. Nanotechnology, 2009, 20: 065709
43
Jiang Z H, Wang F M J, Yin J L, et al. Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites [J]. Composites, 2020, 199B: 108266
44
Li B, Wei Y L, Meng F C, et al. Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators [J]. Superlatt. Microstruct., 2020, 139: 106420
doi: 10.1016/j.spmi.2020.106420
45
Sazonova V, Yaish Y, Üstünel H, et al. A tunable carbon nanotube electromechanical oscillator [J]. Nature, 2004, 431: 284
doi: 10.1038/nature02905
46
Qian D, Zhou Z. Visco-elastic properties of carbon nanotubes and their relation to damping [A]. Time Dependent Constitutive Behavior and Fracture/Failure Processes, Vol.3 [M]. New York: Springer, 2011: 259
47
Patel R K, Bhattacharya B, Basu S. Effect of interphase properties on the damping response of polymer nano-composites [J]. Mech. Res. Commun., 2008, 35: 115
doi: 10.1016/j.mechrescom.2007.08.005
48
Wang K F, Okuno K, Banu M, et al. Vibration-based identification of interphase properties in long fiber reinforced composites [J]. Compos. Struct., 2017, 174: 244
doi: 10.1016/j.compstruct.2017.04.018
49
Pathan M V, Tagarielli V L, Patsias S. Effect of fibre shape and interphase on the anisotropic viscoelastic response of fibre composites [J]. Compos. Struct., 2017, 162: 156
doi: 10.1016/j.compstruct.2016.11.046
50
Vantomme J. A parametric study of material damping in fibre-reinforced plastics [J]. Composites, 1995, 26: 147
doi: 10.1016/0010-4361(95)90415-V