A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions
JU Tianhua1, SHU Nian1, HE Wei1, DING Xueyong2()
1.School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China 2.School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article:
JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions. Acta Metall Sin, 2023, 59(11): 1533-1540.
Activity interaction coefficients for solutes in alloy melts can be predicted by combining Miedema model with extrapolation models. However, the treatment of the binary interaction terms in traditional extrapolation models lacks a clear physical mechanism, which reduces the prediction reliability of models based on traditional extrapolation. The unified extrapolation model (UEM) can mathematically cover all traditional extrapolation models by introducing the contribution coefficient determined by property difference between two elements. In this study, a new model for activity interaction coefficients was built by using UEM to couple with the Miedema model and Tanaka excess entropy relation. The new model can explain the prediction characteristics and application scope of models based on traditional extrapolation in terms of the relation between the contribution coefficient and the property difference. The obtained results favorably agree with the experimental results.
Table 1 Correspondences between the values of the contribution coefficients in the present model and the activity interaction parameters models built based on the traditional extrapolation models
k-i-j
Fe-C-Pb
1
0
0
0
4.15
5.73
0
1
0
0
1.32
0
1
1
1
-7.56
1
0
1
1
-4.73
1
0
0
1
-1.34
1
0
1
0
0.76
0
1
0
1
-4.17
0
1
1
0
-2.07
Fe-C-Mn
1
0
0
0
-8.96
-1.88
0
1
0
0
-1.62
0
1
1
1
-5.01
1
0
1
1
-12.35
1
0
0
1
-8.96
1
0
1
0
-12.35
0
1
0
1
-1.62
0
1
1
0
-5.01
Fe-Mn-Cr
1
0
0
0
0.74
0.90
0
1
0
0
0.74
0
1
1
1
0.73
1
0
1
1
0.74
1
0
0
1
0.74
1
0
1
0
0.74
0
1
0
1
0.73
0
1
1
0
0.74
Fe-Al-Si
1
0
0
0
6.03
6.97
0
1
0
0
6.01
0
1
1
1
6.80
1
0
1
1
6.82
1
0
0
1
6.51
1
0
1
0
6.34
0
1
0
1
6.49
0
1
1
0
6.32
Table 2 Calculated values of activity interaction coefficients , , , and in liquid iron alloy at 1873 K under specified contribution coefficient values, together with the corresponding experimental data from Ref.[6]
Fig.1 Comparisons of calculated value and experiment's value from Ref.[6] for and (a) Fe-C-j (b) Fe-Si-j
1
Wagner C. Thermodynamics of Alloys [M]. Cambridge, MA: Addison-Wesley Press, 1952: 1
2
Sigworth G K, Elliott J F. The thermodynamics of dilute liquid copper alloys [J]. Can. Metall. Q., 1974, 13: 455
doi: 10.1179/cmq.1974.13.3.455
3
Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys [J]. Met. Sci., 1974, 8: 298
doi: 10.1179/msc.1974.8.1.298
4
Sigworth G K, Elliott J F. The thermodynamics of dilute liquid cobalt alloys [J]. Can. Metall. Q., 1976, 15: 123
doi: 10.1179/cmq.1976.15.2.123
5
Sigworth G K, Elliott J F, Vaughn G, et al. The thermodynamics of dilute liquid nickel alloys [J]. Can. Metall. Q., 1977, 16: 104
doi: 10.1179/cmq.1977.16.1.104
6
Hino M, Ito K. Thermodynamic Data for Steelmaking [M]. Sendai: Tohoku University Press, 2010: 1
7
Mikhailov G G, Zherebtsov D A. On the interaction of calcium and oxygen in liquid iron [J]. Mater. Sci. Forum, 2016, 843: 52
doi: 10.4028/www.scientific.net/MSF.843
8
Sugiyama K, Ueda S, Gao X, et al. Measurement of interaction parameter between Cu and Al in molten high Al steel [J]. ISIJ Int., 2017, 57: 625
doi: 10.2355/isijinternational.ISIJINT-2016-676
9
Niu J P, Shan Z Q, Geng S Q, et al. Calculation of interaction coefficient e N T i and activity coefficient fN of titanium to nitrogen in nickel-based superalloy [J]. Vacuum, 2018, 55(3): 45
doi: 10.1016/S0042-207X(99)00122-0
牛建平, 单志强, 耿双奇 等. 镍基高温合金中钛对氮相互作用系数 e N T i 和活度系数fN的计算 [J]. 真空, 2018, 55(3): 45
Ono H, Miki T, Nakamoto M. Determination of interaction parameters between elements in molten iron by evaporation and chemical equilibration techniques [J]. Tetsu Hagané, 2019, 105: 344
Zajączkowski A, Suruło A. Thermodynamics of copper-rich liquid Cu-Fe-Bi alloys determined by vapour pressure measurements [J]. Calphad, 2019, 64: 272
doi: 10.1016/j.calphad.2018.12.012
13
Alcock C B, Richardson F D. Dilute solutions in molten metals and alloys [J]. Acta Metall., 1958, 6: 385
doi: 10.1016/0001-6160(58)90017-8
14
Alcock C B, Richardson F D. Dilute solutions in alloys [J]. Acta Metall., 1960, 8: 882
doi: 10.1016/0001-6160(60)90157-7
15
Guggenheim E A. Mixtures: The Theory of the Equlibrium Properties of Some Simple Classes of Mixtures Solutions and Alloys [M]. Oxford: Clarendon Press, 1952: 1
16
Lupis C H P, Elliott J F. Generalized interaction coefficients [J]. Acta Metall., 1966, 14: 1019
doi: 10.1016/0001-6160(66)90190-8
17
Tanaka T, Gokcen N A, Iida T, et al. Thermodynamic relationship between the enthalpy interaction parameter and entropy interaction parameter in liquid iron-nitrogen based ternary alloys [J]. Z. Metallkd., 1994, 85: 696
18
Tao D P. Prediction expressions of component activity coefficients in Si-based melts [J]. Metall. Mater. Trans., 2014, 45B: 142
19
Iwata K, Matsumiya T, Sawada H, et al. Prediction of thermodynamic properties of solute elements in Si solutions using first-principles calculations [J]. Acta Mater., 2003, 51: 551
doi: 10.1016/S1359-6454(02)00437-8
20
Matsumiya T. Estimation of activity coefficients and interaction parameters of solutes in silicon melts [J]. Metall. Mater. Trans., 2012, 43B: 726
21
Ueno S, Waseda Y, Jacob K T, et al. Theoretical treatment of interaction parameters in multicomponent metallic solutions [J]. Steel Res., 1988, 59: 474
doi: 10.1002/srin.1988.59.issue-11
22
Waseda Y. Interaction parameters in metallic solutions estimated from liquid structure and the heat of solution at infinite dilution [J]. High Temp. Mater. Proc., 2012, 31: 203
23
Ding X Y, Wang W Z, Han Q Y. Thermodynamic calculation of Fe-P-j system melt [J]. Acta Metall. Sin., 1993, 29(12): 21
Ding X Y, Wang W Z, Fan P. Thermodynamic calculation for alloy systems [J]. Metall. Mater. Trans., 1999, 30B: 271
27
Miedema A R, de Châtel P F, de Boer F R. Cohesion in alloys—Fundamentals of a semi-empirical model [J]. Physica B + C, 1980, 100: 1
doi: 10.1016/0378-4363(80)90054-6
28
de Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals: Transition Metal Alloys [M]. Amsterdam: North-Holland, 1988: 1
29
Miedema A R. On the heat of formation of solid alloys. II [J]. J. Less-Common Met., 1976, 46: 67
doi: 10.1016/0022-5088(76)90180-6
30
Chou K C, Austin Chang Y. A study of ternary geometrical models [J]. Ber. Bunsenges. Phys. Chem., 1989, 93: 735
doi: 10.1002/bbpc.v93:6
31
Lupis C H P, Elliott J F. Generalized interaction coefficients: Part I: Definitions [J]. Acta Metall., 1966, 14: 529
doi: 10.1016/0001-6160(66)90320-8
32
Toop G W. Predicting ternary activities using binary data [J]. Trans. Metall. Soc. AIME, 1965, 223: 850
33
Ding X Y, Fan P, Luo L H. Thermodynamic Model, Prediction Value and Software Development of Alloy Melt [M]. Shenyang: Northeastern University Press, 1998: 1
Hillert M. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases [J]. Calphad, 1980, 4: 1
doi: 10.1016/0364-5916(80)90016-4
35
Chartrand P, Pelton A D. On the choice of “geometric” thermodynamic models [J]. J. Phase Equilib., 2000, 21: 141
doi: 10.1361/105497100770340192
36
Dogan A, Arslan H. Comparative thermodynamic prediction of integral properties of six component, quaternary, and ternary systems [J]. Metall. Mater. Trans., 2015, 46A: 3753
37
Chou K C. A new solution model for predicting ternary thermodynamic properties [J]. Calphad, 1987, 11: 293
doi: 10.1016/0364-5916(87)90048-4
38
Malakhov D V, Tokuda M. “Equidistant method” to estimate thermodynamic properties of multicomponent solutions by using data on binary boundary systems [J]. Mater. Trans. JIM, 1995, 36: 757
doi: 10.1016/j.matdes.2011.12.004
39
Chou K C, Wei S K. A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries [J]. Metall. Mater. Trans., 1997, 28B: 439
40
Pelton A D. A general “geometric” thermodynamic model for multicomponent solutions [J]. Calphad, 2001, 25: 319
doi: 10.1016/S0364-5916(01)00052-9
41
Jacob K T, Fitzner K. The estimation of the thermodynamic properties of ternary alloys from binary data using the shortest distance composition path [J]. Thermochim. Acta, 1977, 18: 197
doi: 10.1016/0040-6031(77)80019-1
42
Kohler F. Estimation of the thermodynamic data for a ternary system from the corresponding binary systems [J]. Monatsh. Chem., 1960, 91: 738
doi: 10.1007/BF00899814
43
Muggianu Y M, Gambino M, Bros J P. Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d'une représentation analytique des grandeurs d'excès intégrales et partielles de mélange [J]. J. Chim. Phys., 1975, 72: 83
doi: 10.1051/jcp/1975720083
44
Fan P, Chou K C. A model for predicting thermodynamic properties of metallic solutions from fundmental physical quantities of constituent elements [J]. Acta Metall. Sin., 1999, 35: 421
Fan P, Chou K C. A self-consistent model for predicting interaction parameters in multicomponent alloys [J]. Metall. Mater. Trans., 1999, 30A: 3099
46
Zhang N, Chen W L, Chen X Q, et al. Modeling activity and interaction coefficients of components of multicomponent alloy melts: An example of iron melt [J]. High Temp. Mater. Proc., 2013, 32:215
doi: 10.1515/htmp-2012-0123
47
Ju T H, Ding X Y, Chen W L, et al. A new perspective on geometric thermodynamic models [J]. J. Phase Equilib. Diff., 2019, 40: 715
doi: 10.1007/s11669-019-00757-5
48
Ju T H, Ding X Y, Zhang L, et al. A general model for solutes activity interaction parameters in dilute metallic solutions [J]. ISIJ Int., 2020, 60: 2416
doi: 10.2355/isijinternational.ISIJINT-2019-564
49
Tanaka T, Gokcen N A, Morita Z I. Relationship between enthalpy of mixing and excess entropy in liquid binary alloys [J]. Z. Metallkd., 1990, 81: 49
50
Tanaka T, Gokcen N A, Morita Z I, et al. Thermodynamic relationship between enthalpy of mixing and excess entropy in liquid binary alloys [J]. Z. Metallkd., 1993, 84: 192
51
Tanaka T, Gokcen N A, Kumar K C H, et al. Thermodynamic relationship between enthalpy of mixing and excess entropy in solid solutions of binary alloys [J]. Z. Metallkd., 1996, 87: 779
52
Boom R, de Boer F R. Enthalpy of formation of binary solid and liquid Mg alloys—Comparison of Miedema-model calculations with data reported in literature [J]. Calphad, 2020, 68: 101647
doi: 10.1016/j.calphad.2019.101647
53
Neuhausen J, Eichler B. CH0300080 [R]. Villigen: Paul Scherrer Institut, 2003
54
Ju T H, Ding X Y, Zhang L, et al. On the definition of the components' difference in properties in the unified extrapolation model [J]. Fluid Phase Equilib., 2020, 515: 112588
doi: 10.1016/j.fluid.2020.112588
55
Ju T H, Ding X Y, Yan X L, et al. New expression for property difference in components for the unified extrapolation model [J]. J. Mol. Liq., 2020, 320: 114469
doi: 10.1016/j.molliq.2020.114469
NI Ruiming;MA Zhongting;WEI Shoukun University of Science and Technology Beijing associate professor;Faculty of Physical Chemstry of Metallurgy;University of Science and Technology Beijing; Beijing 100083. THERMODYMICS OF Mn-C-j MELTS AT 1350℃[J]. 金属学报, 1990, 26(2): 93-97.