Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La
ZHANG Lili1, JI Zongwei2, ZHAO Jiuzhou1(), HE Jie1, JIANG Hongxiang1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:
ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La. Acta Metall Sin, 2023, 59(11): 1541-1546.
The modification of eutectic Si to fiber morphology from coarse plate-like morphology is essential for producing an Al-Si hypoeutectic alloy. Furthermore, chemical modification through the addition of modifying elements, such as Na and Sr, to melt is the most widely used method in industrial production to improve microstructures. Recently, the effect of rare earth metals on the eutectic Si modification has also attracted considerable attention, especially for the economical element La. Key factors influencing eutectic Si modification in Al-Si hypoeutectic alloy by trace La are theoretically explored. The results demonstrate that the solubility of La in the primary α-Al phase and interaction parameter between La and Al (or Si) primarily contribute to the eutectic Si modification. When the addition level of trace La is within its solubility in the primary α-Al phase, La distributes in α-Al and eutectic Si, and the modification effect increases with the La addition level. When the addition level of trace La is greater than its solubility in α-Al, a ternary compound containing Al, Si, and La exists before the eutectic reaction due to the significant value of the interaction parameter between La and Al (or Si). Calculated results further prove that the composition of the ternary compound is AlSiLa due to the substantial value of heat for the formation of AlSiLa and the small value of interfacial energy between Al melt and AlSiLa. Under this condition, La distributes in α-Al, AlSiLa, and eutectic Si, and the La content in α-Al and eutectic Si almost remain constant. Thus, the modification effect almost stays unchanged with La addition. A suitable modification effect is achieved when the La addition level is around its solubility in the primary α-Al phase.
Fund: National Key Research and Development Program of China(2021YFA0716303);China's Manned Space Station Project;National Natural Science Foundation of China(51901231);National Natural Science Foundation of China(51971227)
Corresponding Authors:
ZHAO Jiuzhou, professor, Tel: (024)23971918, E-mail: jzzhao@imr.ac.cn
Fig.1 Solute M (La or Si) concentration profile around an α-Al grain ( is the initial concentration of solute M; kM and are the equilibrium partition coefficient and eutectic composition in Al-M binary system, respectively; is the maximum solubility of M in the α-Al phase; and are the concentration of solute M in the melt and in the α-Al at α-Al/melt interface, respectively; (T1) and (T2) are the solute M concentration in the melt ahead of α-Al/melt interface at temperatures T1 and T2, respectively; m is stoichiometric ratio)
Element
Tm / K
V 2/3 / (cm2·mol-2/3)
ϕ / V
(r / p) / V
u
Al
933
4.60
1.39
4.20
1.9
0.07
Si
1685
4.20
1.50
4.70
2.1
0.04
La
1193
7.98
1.18
3.17
0.7
0.07
Table 1 Parameters used in the calculations[20,21]
Fig.2 Calculated results for the interaction parameters of La-i melt (ΩLa-i ) as a function of La concentration in the i-M system at α-Al/melt interface() (ΩLa-Al, ΩLa-Si, and ΩAl-Si are the interaction parameters of La-Al melt, La-Si melt, and Al-Si melt at 850 K, respectively. Inset shows the enlarged view of ΩLa-i in the i rich corner)
m
/ (kJ·mol-1)
/ (J·m-2)
1
-66.1
0
2
-40.3
0.021
Table 2 Heat for the formation of Al m Si m La () at 0 K and interfacial energy between the melt and Al m Si m La compound () at 850 K
Fig.3 Dependences of the La concentration in eutectic Si () on the La initial concentration () in Al-6Si alloy melt
1
Liu X R, Zhang Y D, Beausir B, et al. Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al-12.7%Si alloys investigated by SEM/EBSD [J]. Acta Mater., 2015, 97: 338
doi: 10.1016/j.actamat.2015.06.041
2
Tsai Y C, Chou C Y, Lee S L, et al. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys [J]. J. Alloys Compd., 2009, 487: 157
doi: 10.1016/j.jallcom.2009.07.183
3
Jiang W M, Fan Z T, Dai Y C, et al. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy [J]. Mater. Sci. Eng., 2014, A597: 237
4
Jung J G, Ahn T Y, Cho Y H, et al. Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al-Si alloy [J]. Acta Mater., 2018, 144: 31
doi: 10.1016/j.actamat.2017.10.039
5
Makhlouf M M, Guthy H V. The aluminum-silicon eutectic reaction: Mechanisms and crystallography [J]. J. Light Met., 2001, 1: 199
doi: 10.1016/S1471-5317(02)00003-2
6
Nogita K, McDonald S D, Dahle A K. Eutectic modification of Al-Si alloys with rare earth metals [J]. Mater. Trans., 2004, 45: 323
doi: 10.2320/matertrans.45.323
7
Pourbahari B, Emamy M. Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy [J]. Mater. Des., 2016, 94: 111
doi: 10.1016/j.matdes.2016.01.039
8
Li B. Modification evolution of eutectic silicon in AlSi7Mg alloy and micro-mechanism [D]. Harbin: Harbin Institute of Technology, 2011
Dong G M, Sun G X, Liao H C. Modification of eutectic silicon in Al-Si cast alloys [J]. Foundry, 2005, 54: 1
董光明, 孙国雄, 廖恒成. 共晶硅的变质 [J]. 铸造, 2005, 54: 1
10
Pan F S. Current status and prospects of rare earth aluminum alloy [J]. Mater. Rep., 1990, (1): 21
潘复生. 我国稀土铝合金的现状和展望 [J]. 材料导报, 1990, (1): 21
11
Jiang H X, Li S X, Zheng Q J, et al. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al-Fe alloys [J]. Mater. Des., 2020, 195: 108991
doi: 10.1016/j.matdes.2020.108991
12
Zhang L L, Zheng Q J, Jiang H X, et al. Effect of La addition on microstructure evolution of hypoeutectic Al-6Si alloys [J]. J. Mater. Sci., 2020, 55: 7546
doi: 10.1007/s10853-020-04522-9
13
Jiang H X, Li S X, Zhang L L, et al. The influence of rare earth element lanthanum on the microstructures and properties of as-cast 8176 (Al-0.5Fe) aluminum alloy [J]. J. Alloys Compd., 2021, 859: 157804
doi: 10.1016/j.jallcom.2020.157804
14
Zheng Q J, Zhang L L, Jiang H X, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47: 142
doi: 10.1016/j.jmst.2019.12.021
15
Zheng Q J, Ye Z F, Jiang H X, et al. Effect of micro-alloying element La on solidification microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. Acta Metall. Sin., 2021, 57: 103
doi: 10.11900/0412.1961.2020.00158
StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
17
Balluffi R W, Allen S M, Carter W C. Kinetics of Materials [M]. Hoboken: Wiley-Interscience, 2005: 543
18
Fan T X, Yang G, Zhang D. Thermodynamic effect of alloying addition on in-situ reinforced TiB2/Al composites [J]. Metall. Mater. Trans., 2005, 36A: 225
19
Zhang L L, Zheng Q J, Jiang H X, et al. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al [J]. Scr. Mater., 2019, 160: 25
doi: 10.1016/j.scriptamat.2018.09.042
20
Niessen A K, de Boer F R, Boom R, et al. Model predictions for the enthalpy of formation of transition metal alloys II [J]. Calphad, 1983, 7: 51
doi: 10.1016/0364-5916(83)90030-5
21
Miedema A R, de Châtel P F, de Boer F R. Cohesion in alloys—Fundamentals of a semi-empirical model [J]. Physica B + C, 1980, 100: 1
doi: 10.1016/0378-4363(80)90054-6
22
Ji Z W, Hu C H, Wang D H, et al. Mechanical properties and chemical bonding of the Os-B system: A first-principles study [J]. Acta Mater., 2012, 60: 4208
doi: 10.1016/j.actamat.2012.04.015
Hosseinifar M, Malakhov D V. The sequence of intermetallics formation during the solidification of an Al-Mg-Si alloy containing La [J]. Metall. Mater. Trans., 2011, 42A: 825
26
Wang T M, Zhao Y F, Chen Z N, et al. Combining effects of TiB2 and La on the aging behavior of A356 alloy [J]. Mater. Sci. Eng., 2015, A644: 425
27
Alkahtani S A, Elgallad E M, Tash M M, et al. Effect of rare Earth metals on the microstructure of Al-Si based alloys [J]. Materials, 2016, 9: 45
doi: 10.3390/ma9010045
28
Elgallad E M, Ibrahim M F, Doty H W, et al. Microstructural characterisation of Al-Si cast alloys containing rare earth additions [J]. Philos. Mag., 2018, 98: 1337
doi: 10.1080/14786435.2018.1435917