Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (11): 1541-1546    DOI: 10.11900/0412.1961.2021.00490
Current Issue | Archive | Adv Search |
Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La
ZHANG Lili1, JI Zongwei2, ZHAO Jiuzhou1(), HE Jie1, JIANG Hongxiang1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article: 

ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La. Acta Metall Sin, 2023, 59(11): 1541-1546.

Download:  HTML  PDF(801KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The modification of eutectic Si to fiber morphology from coarse plate-like morphology is essential for producing an Al-Si hypoeutectic alloy. Furthermore, chemical modification through the addition of modifying elements, such as Na and Sr, to melt is the most widely used method in industrial production to improve microstructures. Recently, the effect of rare earth metals on the eutectic Si modification has also attracted considerable attention, especially for the economical element La. Key factors influencing eutectic Si modification in Al-Si hypoeutectic alloy by trace La are theoretically explored. The results demonstrate that the solubility of La in the primary α-Al phase and interaction parameter between La and Al (or Si) primarily contribute to the eutectic Si modification. When the addition level of trace La is within its solubility in the primary α-Al phase, La distributes in α-Al and eutectic Si, and the modification effect increases with the La addition level. When the addition level of trace La is greater than its solubility in α-Al, a ternary compound containing Al, Si, and La exists before the eutectic reaction due to the significant value of the interaction parameter between La and Al (or Si). Calculated results further prove that the composition of the ternary compound is AlSiLa due to the substantial value of heat for the formation of AlSiLa and the small value of interfacial energy between Al melt and AlSiLa. Under this condition, La distributes in α-Al, AlSiLa, and eutectic Si, and the La content in α-Al and eutectic Si almost remain constant. Thus, the modification effect almost stays unchanged with La addition. A suitable modification effect is achieved when the La addition level is around its solubility in the primary α-Al phase.

Key words:  Al-Si hypoeutectic alloy      modification      interaction parameter      trace element La      solubility     
Received:  12 November 2021     
ZTFLH:  TG111.4  
Fund: National Key Research and Development Program of China(2021YFA0716303);China's Manned Space Station Project;National Natural Science Foundation of China(51901231);National Natural Science Foundation of China(51971227)
Corresponding Authors:  ZHAO Jiuzhou, professor, Tel: (024)23971918, E-mail: jzzhao@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00490     OR     https://www.ams.org.cn/EN/Y2023/V59/I11/1541

Fig.1  Solute M (La or Si) concentration profile around an α-Al grain (xM0 is the initial concentration of solute M; kM and xME are the equilibrium partition coefficient and eutectic composition in Al-M binary system, respectively; SMα-Al is the maximum solubility of M in the α-Al phase; xM*L and x-Mα-Al are the concentration of solute M in the melt and in the α-Al at α-Al/melt interface, respectively; xML(T1) and xML(T2) are the solute M concentration in the melt ahead of α-Al/melt interface at temperatures T1 and T2, respectively; m is stoichiometric ratio)
ElementTm / KV 2/3 / (cm2·mol-2/3)nws1/3ϕ / V(r / p) / Vu
Al9334.601.394.201.90.07
Si16854.201.504.702.10.04
La11937.981.183.170.70.07
Table 1  Parameters used in the calculations[20,21]
Fig.2  Calculated results for the interaction parameters of La-i melt (ΩLa-i ) as a function of La concentration in the i-M system at α-Al/melt interface(xLa*i) (ΩLa-Al, ΩLa-Si, and ΩAl-Si are the interaction parameters of La-Al melt, La-Si melt, and Al-Si melt at 850 K, respectively. Inset shows the enlarged view of ΩLa-i in the i rich corner)
mΔfHAlmSimLa / (kJ·mol-1)σAl/AlmSmLa / (J·m-2)
1-66.10
2-40.30.021
Table 2  Heat for the formation of Al m Si m La (ΔfHAlmSimLa) at 0 K and interfacial energy between the melt and Al m Si m La compound (σAl/AlmSmLa) at 850 K
Fig.3  Dependences of the La concentration in eutectic Si (xLaSi) on the La initial concentration (xLa0) in Al-6Si alloy melt
1 Liu X R, Zhang Y D, Beausir B, et al. Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al-12.7%Si alloys investigated by SEM/EBSD [J]. Acta Mater., 2015, 97: 338
doi: 10.1016/j.actamat.2015.06.041
2 Tsai Y C, Chou C Y, Lee S L, et al. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys [J]. J. Alloys Compd., 2009, 487: 157
doi: 10.1016/j.jallcom.2009.07.183
3 Jiang W M, Fan Z T, Dai Y C, et al. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy [J]. Mater. Sci. Eng., 2014, A597: 237
4 Jung J G, Ahn T Y, Cho Y H, et al. Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al-Si alloy [J]. Acta Mater., 2018, 144: 31
doi: 10.1016/j.actamat.2017.10.039
5 Makhlouf M M, Guthy H V. The aluminum-silicon eutectic reaction: Mechanisms and crystallography [J]. J. Light Met., 2001, 1: 199
doi: 10.1016/S1471-5317(02)00003-2
6 Nogita K, McDonald S D, Dahle A K. Eutectic modification of Al-Si alloys with rare earth metals [J]. Mater. Trans., 2004, 45: 323
doi: 10.2320/matertrans.45.323
7 Pourbahari B, Emamy M. Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy [J]. Mater. Des., 2016, 94: 111
doi: 10.1016/j.matdes.2016.01.039
8 Li B. Modification evolution of eutectic silicon in AlSi7Mg alloy and micro-mechanism [D]. Harbin: Harbin Institute of Technology, 2011
李 豹. AlSi7Mg合金共晶硅变质规律及其微观机制 [D]. 哈尔滨: 哈尔滨工业大学, 2011
9 Dong G M, Sun G X, Liao H C. Modification of eutectic silicon in Al-Si cast alloys [J]. Foundry, 2005, 54: 1
董光明, 孙国雄, 廖恒成. 共晶硅的变质 [J]. 铸造, 2005, 54: 1
10 Pan F S. Current status and prospects of rare earth aluminum alloy [J]. Mater. Rep., 1990, (1): 21
潘复生. 我国稀土铝合金的现状和展望 [J]. 材料导报, 1990, (1): 21
11 Jiang H X, Li S X, Zheng Q J, et al. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al-Fe alloys [J]. Mater. Des., 2020, 195: 108991
doi: 10.1016/j.matdes.2020.108991
12 Zhang L L, Zheng Q J, Jiang H X, et al. Effect of La addition on microstructure evolution of hypoeutectic Al-6Si alloys [J]. J. Mater. Sci., 2020, 55: 7546
doi: 10.1007/s10853-020-04522-9
13 Jiang H X, Li S X, Zhang L L, et al. The influence of rare earth element lanthanum on the microstructures and properties of as-cast 8176 (Al-0.5Fe) aluminum alloy [J]. J. Alloys Compd., 2021, 859: 157804
doi: 10.1016/j.jallcom.2020.157804
14 Zheng Q J, Zhang L L, Jiang H X, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47: 142
doi: 10.1016/j.jmst.2019.12.021
15 Zheng Q J, Ye Z F, Jiang H X, et al. Effect of micro-alloying element La on solidification microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. Acta Metall. Sin., 2021, 57: 103
doi: 10.11900/0412.1961.2020.00158
郑秋菊, 叶中飞, 江鸿翔 等. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响 [J]. 金属学报, 2021, 57: 103
doi: 10.11900/0412.1961.2020.00158
16 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
17 Balluffi R W, Allen S M, Carter W C. Kinetics of Materials [M]. Hoboken: Wiley-Interscience, 2005: 543
18 Fan T X, Yang G, Zhang D. Thermodynamic effect of alloying addition on in-situ reinforced TiB2/Al composites [J]. Metall. Mater. Trans., 2005, 36A: 225
19 Zhang L L, Zheng Q J, Jiang H X, et al. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al [J]. Scr. Mater., 2019, 160: 25
doi: 10.1016/j.scriptamat.2018.09.042
20 Niessen A K, de Boer F R, Boom R, et al. Model predictions for the enthalpy of formation of transition metal alloys II [J]. Calphad, 1983, 7: 51
doi: 10.1016/0364-5916(83)90030-5
21 Miedema A R, de Châtel P F, de Boer F R. Cohesion in alloys—Fundamentals of a semi-empirical model [J]. Physica B + C, 1980, 100: 1
doi: 10.1016/0378-4363(80)90054-6
22 Ji Z W, Hu C H, Wang D H, et al. Mechanical properties and chemical bonding of the Os-B system: A first-principles study [J]. Acta Mater., 2012, 60: 4208
doi: 10.1016/j.actamat.2012.04.015
23 Kaptay G. Modelling interfacial energies in metallic systems [J]. Mater. Sci. Forum, 2005, 473-474: 1
doi: 10.4028/www.scientific.net/MSF.473-474
24 Dinsdale A T. SGTE data for pure elements [J]. Calphad, 1991, 15: 317
doi: 10.1016/0364-5916(91)90030-N
25 Hosseinifar M, Malakhov D V. The sequence of intermetallics formation during the solidification of an Al-Mg-Si alloy containing La [J]. Metall. Mater. Trans., 2011, 42A: 825
26 Wang T M, Zhao Y F, Chen Z N, et al. Combining effects of TiB2 and La on the aging behavior of A356 alloy [J]. Mater. Sci. Eng., 2015, A644: 425
27 Alkahtani S A, Elgallad E M, Tash M M, et al. Effect of rare Earth metals on the microstructure of Al-Si based alloys [J]. Materials, 2016, 9: 45
doi: 10.3390/ma9010045
28 Elgallad E M, Ibrahim M F, Doty H W, et al. Microstructural characterisation of Al-Si cast alloys containing rare earth additions [J]. Philos. Mag., 2018, 98: 1337
doi: 10.1080/14786435.2018.1435917
[1] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[2] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[3] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[4] YANG Lipo, ZHANG Hailong, ZHANG Yongshun. Present Analysis and Trend Prediction of Shape/ Performance Collaborative Control for High-End Cold Rolling Foils[J]. 金属学报, 2021, 57(3): 295-308.
[5] LI Yuxing, LIU Xinghao, WANG Cailin, HU Qihui, WANG Jinghan, MA Hongtao, ZHANG Nan. Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities[J]. 金属学报, 2021, 57(3): 283-294.
[6] Rongyao MA, Lin ZHAO, Changgang WANG, Xin MU, Xin WEI, Junhua DONG, Wei KE. Influence of Hydrostatic Pressure on the Thermodynamics and Kinetics of Metal Corrosion[J]. 金属学报, 2019, 55(2): 281-290.
[7] Di ZHANG, Mengying YUAN, Zhanqiu TAN, Ding-Bang XIONG, Zhiqiang LI. Progress in Interface Modification and Nanoscale Study of Diamond/Cu Composites[J]. 金属学报, 2018, 54(11): 1586-1596.
[8] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[9] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[10] Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. 金属学报, 2017, 53(10): 1284-1302.
[11] Zhibin FAN, Xiaoping LIN, Yun DONG, Jie YE, Chan LI, Bo LI. AGE-HARDENING RESPONSE FOR Mg96.17Zn3.15Y0.5Zr0.18 SOLID SOLUTION ALLOY UNDER HIGH PRESSURE[J]. 金属学报, 2016, 52(12): 1491-1496.
[12] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[13] LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. 金属学报, 2013, 49(6): 667-674.
[14] YANG Lingxiao, GUO Xiping, QIAO Yanqiang, PAN Ruobing. FORMATION OF Ge-Y MODIFIED SILICIDE COATINGS ON Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2013, 49(11): 1433-1438.
[15] ZHAO Shengsheng CHENG Yu CHANG Zhengkai WANG Tiegang SUN Chao. MODIFICATION OF STRESS DISTRIBUTION ALONG THE THICKNESS OF (Ti, Al)N COATINGS AND PREPARATION OF THE COATINGS WITH LARGE THICKNESS[J]. 金属学报, 2012, 48(3): 277-282.
No Suggested Reading articles found!