Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (11): 1487-1498    DOI: 10.11900/0412.1961.2021.00366
Current Issue | Archive | Adv Search |
Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment
SONG Jialiang1,2, JIANG Zixue1,2, YI Pan3, CHEN Junhang1,2, LI Zhaoliang1,2, LUO Hong1,2(), DONG Chaofang1,2, XIAO Kui1,2()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
3.China Electric Power Research Institute Co., Ltd., Beijing 100192, China
Cite this article: 

SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment. Acta Metall Sin, 2023, 59(11): 1487-1498.

Download:  HTML  PDF(3697KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion is ubiquitous in transportation, infrastructure, and other areas, and it always reduces the service life of materials. Bogie, an important component of the high-speed railway, performs bearing, guiding, damping, traction, and braking. The safe operation of the high-speed railway is inextricably linked to its service performance. However, for the high-speed railway bogie, its service environment constantly changes as per the operation of the train and being in various atmospheric environments, such as the ocean, pollution, damp-heat, and severe cold for a long time. Therefore, special attention must be paid to the effect of atmospheric corrosion on its service life. The use of weathering steel in bogie has effectively balanced the cost and service life. With the advancement of science and social growth, previous materials are no longer capable of meeting the current service life requirements. G390NH is provided for investigation as a newly designed weathering steel for the bogie. In this study, the corrosion behavior and the product layer evolution law of high-speed rail bogie steel G390NH in simulated marine and industrial atmospheric environments are investigated using periodic wetting tests combined with corrosion kinetics, conventional electrochemistry, microscopic morphology, and corrosion product composition analysis. It demonstrates that the two ions (Cl- and $SO_{3}^{2-}$) have different corrosion mechanisms on the material. In simulated marine atmosphere environment, Cl- has a higher penetrating capacity, and the rust layer consists of unsteady Fe3O4 and γ-FeOOH; furthermore, coupled with the effect of alternating dry and wet, corrosion always maintains a high rate and the rust layer does not give a very effective protection function. However, in the acidic $SO_{3}^{2-}$ environment, although the corrosion is accelerated, a layer of corrosion-resistant Cu is enriched in the inner rust layer and simultaneously, and a large amount of α-FeOOH is promoted, which greatly enhances the corrosion resistance of the rust layer.

Key words:  bogie steel      cycle immersion test      atmospheric corrosion      industrial atmosphere      marine atmosphere      corrosion behavior     
Received:  30 August 2021     
ZTFLH:  TG171  
Fund: National Key Research and Development Program of China(2017YFB0304602);Open Foundation of State Key Laboratory of Metal Materials for Marine Equipment and Application(SKLMEA-K201908);Key Laboratory of Surface Physics and Chemistry Discipline Development Fund Project(XKFZ201906)
Corresponding Authors:  XIAO Kui, professor, Tel: (010)62333975, E-mail: xiaokui@ustb.edu.cn;
LUO Hong, professor, Tel: (010)62334300, E-mail: luohong@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00366     OR     https://www.ams.org.cn/EN/Y2023/V59/I11/1487

Fig.1  OM image of microstructure for G390NH
Fig.2  Corrosion mass loss curves of G390NH in 3.5%NaCl and 0.01 mol/L NaHSO3 solutions
Salt solutionA / (g·m-2)nR2
3.5%NaCl7.6640.9610.991
0.01 mol/L NaHSO33.9260.8560.995
Table 1  Fitting results of corrosion kinetics of G390NH in 3.5%NaCl and 0.01 mol/L NaHSO3 solutions
Fig.3  Corrosion rate and ratio of G390NH after different cycle immersion in 3.5%NaCl and 0.01 mol/L NaHSO3 solutions
Fig.4  Electrochemical polarization curves of G390NH in 3.5%NaCl (a) and 0.01 mol/L NaHSO3 (b) solutions
Salt solutionTest period / hEcorr / VIcorr / μA
3.5%NaCl24-0.800214.934
120-0.748272.736
240-0.652287.560
360-0.526167.710
0.01 mol/L NaHSO324-0.46543.269
120-0.57469.919
240-0.34630.411
360-0.31028.516
Table 2  Polarization curve fitting results of G390NH in 3.5%NaCl and 0.01 mol/L NaHSO3 solutions
Fig.5  Polarization curves of G390NH in 3.5%NaCl and 0.01 mol/L NaHSO3 solution fits the change trend of Ecorr and Icorr
Fig.6  Corrosion macromorphologies of G390NH in NaCl environment (a-d) and NaHSO3 environment (e-h) (a, e) 24 h (b, f) 120 h (c, g) 240 h (d, h) 360 h
Fig.7  Corrosion microstructures of G390NH in NaCl environment (a-d) and NaHSO3 environment (e-h) (a, e) 24 h (b, f) 120 h (c, g) 240 h (d, h) 360 h
Fig.8  Cross section morphologies and EDS mapping analyses of G390NH rust layer after 360 h corrosion (a, b) NaCl environment (c) NaHSO3 environment
Fig.9  XRD spectra of corrosion products in different periods in 3.5%NaCl environment
(a) 24 h (b) 120 h (c) 240 h (d) 360 h
Fig.10  XRD spectra of corrosion products in different periods in 0.01 mol/L NaHSO3 environment
(a) 120 h (b) 240 h (c) 360 h
SampleProduct analysis / (mass fraction, %)α / γ
α-FeOOHγ-FeOOHFe3O4NaClβ-FeOOH
24 h--100.0---
120 h inner28.130.141.8--0.93
120 h outer35.044.520.5--0.79
240 h inner--100.0---
240 h outer32.043.39.814.9-0.74
360 h inner--83.5-16.5-
360 h outer37.028.610.823.6-1.29
Table 3  Semi-quantitative analysis results of corrosion products in different cycles in 3.5%NaCl environment
SampleProduct analysis / (mass fraction, %)α / γ
α-FeOOHγ-FeOOHFe2O3Fe3O4
120 h80.05.614.4-14.29
240 h inner79.56.713.8-11.87
240 h outer79.87.712.6-10.36
360 h inner78.59.2-12.38.53
360 h outer77.98.89.93.48.85
Table 4  Semi-quantitative analysis results of corrosion products in different periods in 0.01 mol/L NaHSO3 environment
Fig.11  Proportions and α / γ values of G390NH corrosion products
1 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
2 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
3 Ma Y T, Li Y, Wang F H. Weatherability of 09CuPCrNi steel in a tropical marine environment [J]. Corros. Sci., 2009, 51: 1725
doi: 10.1016/j.corsci.2009.04.024
4 Qian Y H, Ma C H, Niu D, et al. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels [J]. Corros. Sci., 2013, 74: 424
doi: 10.1016/j.corsci.2013.05.008
5 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
6 Wang J, Wang Z Y, Ke W. A study of the evolution of rust on weathering steel submitted to the Qinghai salt lake atmospheric corrosion [J]. Mater. Chem. Phys., 2013, 139: 225
doi: 10.1016/j.matchemphys.2013.01.028
7 Zhang Z J, Ding Y X, Liu D J, et al. Microstructure and corrosion resistance of welded joint of SMA490BW and Q345E dissimilar metals for bogies [J]. Hot Work. Technol., 2021, 50(5): 46
张政军, 丁阳喜, 刘德佳 等. 转向架用SMA490BW和Q345E异种金属焊接接头组织和耐腐蚀行为 [J]. 热加工工艺, 2021, 50(5):46
8 Zhang Q, Dai F H, Si Y, et al. Microstructure and salt spray corrosion behavior of bogie Q345C steel surfacing weld [J]. Electr. Weld. Mach., 2016, 46(6): 107
张 强, 代夫华, 司 毅 等. 转向架用Q345C钢堆焊接头组织及盐雾腐蚀行为 [J]. 电焊机, 2016, 46(6): 107
9 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
10 Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 130
doi: 10.1016/j.corsci.2013.09.008
11 Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
doi: 10.1016/j.corsci.2004.10.021
12 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
13 Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
14 Singh D D N, Yadav S, Saha J K. Role of climatic conditions on corrosion characteristics of structural steels [J]. Corros. Sci., 2008, 50: 93
doi: 10.1016/j.corsci.2007.06.026
15 Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J]. Corros. Sci., 1974, 14: 131
doi: 10.1016/S0010-938X(74)80051-X
16 Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
doi: 10.1016/S0010-938X(03)00070-2
17 Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J]. Corros. Sci., 1991, 32: 417
doi: 10.1016/0010-938X(91)90123-7
18 Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
19 Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
20 Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng. Sci. Technol., 2019, 54: 241
doi: 10.1080/1478422X.2019.1574955
21 Zhang H, Du Y X, Li W, et al. Investigation on AC-induced corrosion behavior and product film of X70 steel in aqueous environmental with various ions [J]. Acta Metall. Sin., 2017, 53: 975
张 慧, 杜艳霞, 李 伟 等. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析 [J]. 金属学报, 2017, 53: 975
22 Majzlan J, Mazeina L, Navrotsky A. Enthalpy of water adsorption and surface enthalpy of lepidocrocite (γ-FeOOH) [J]. Geochim. Cosmochim. Acta, 2007, 71: 615
doi: 10.1016/j.gca.2006.10.010
23 Majzlan J, Grevel K D, Navrotsky A. Thermodynamics of Fe oxides:Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3) [J]. Am. Mineral., 2003, 88: 855
doi: 10.2138/am-2003-5-614
24 Hara S, Kamimura T, Miyuki H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge [J]. Corros. Sci., 2007, 49: 1131
doi: 10.1016/j.corsci.2006.06.016
25 Rémazeilles C, Refait P. On the formation of β-FeOOH (Akaganéite) in chloride-containing environments [J]. Corros. Sci., 2007, 49: 844
doi: 10.1016/j.corsci.2006.06.003
26 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
27 Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
doi: 10.1016/j.corsci.2012.09.020
28 Qu Q, Yan C W, Zhang L, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel [J]. Acta Metall. Sin., 2002, 38: 1062
屈 庆, 严川伟, 张 蕾 等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应 [J]. 金属学报, 2002, 38: 1062
29 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
30 Misawa T, Kyuno T, Suëtaka W, et al. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels [J]. Corros. Sci., 1971, 11: 35
doi: 10.1016/S0010-938X(71)80072-0
31 Gong K, Wu M, Liu G X. Stress corrosion cracking behavior of rusted X100 steel under the combined action of Cl- and HSO3- in a wet-dry cycle environment [J]. Corros. Sci., 2020, 165: 108382
doi: 10.1016/j.corsci.2019.108382
32 Hao L, Zhang S X, Dong J H, et al. Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion [J]. Metall. Mater. Trans., 2012, 43A: 1724
33 Wang J, Wang Z Y, Ke W. Corrosion behaviour of weathering steel in diluted Qinghai salt lake water in a laboratory accelerated test that involved cyclic wet/dry conditions [J]. Mater. Chem. Phys., 2010, 124: 952
doi: 10.1016/j.matchemphys.2010.07.069
34 Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
doi: 10.3724/SP.J.1037.2010.00489
柯 伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365
35 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
doi: 10.1016/j.corsci.2014.02.010
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[3] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[4] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[7] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[8] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[9] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[10] Xingchen CHEN, Jie WANG, Deren CHEN, Shuncong ZHONG, Xiangfeng WANG. Effect of Na on Early Atmospheric Corrosion of Al[J]. 金属学报, 2019, 55(4): 529-536.
[11] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[12] Mingxiao GUO, Chen PAN, Zhenyao WANG, Wei HAN. A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to a Simulated Coastal-Industrial Atmosphere[J]. 金属学报, 2018, 54(1): 65-75.
[13] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[14] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[15] Junke HAN,Hong YAN,Yao HUANG,Lujun ZHOU,Shanwu YANG. Structural Features of Oxide Scales on Weathering Steel and Their Influence on Atmospheric Corrosion[J]. 金属学报, 2017, 53(2): 163-174.
No Suggested Reading articles found!