Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (10): 1389-1400    DOI: 10.11900/0412.1961.2021.00340
Research paper Current Issue | Archive | Adv Search |
Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining
PENG Zhiqiang1,2, LIU Qian1,2, GUO Dongwei1,2, ZENG Zihang1,2, CAO Jianghai1,2, HOU Zibing1,2()
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China
Cite this article: 

PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining. Acta Metall Sin, 2023, 59(10): 1389-1400.

Download:  HTML  PDF(2403KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mold heat transfer has an essential influence on the initial formation of surface longitudinal cracks in slabs, and control over various process parameters in continuous casting is very important for achieving the desired qualified product. A study on the influence of parameters on mold heat transfer helps determine the law of mold heat transfer and realize fine control of the parameters. However, the cross-correlation between continuous casting parameters makes it difficult to identify the independent influence of each parameter on the mold heat flux. Based on the parameters in the production process of continuous casting using big data mining and analytics, a new method for obtaining the independent effect of each parameter on the mold heat transfer is proposed, namely the new method for independent process influence (IPI). The five links included in the IPI method can be calculated in turn: data preprocessing, cross-correlation level calculation, main related parameters testing, data filtering, and independent influence analysis. The results showed that, in addition to the conventional influence of the casting speed, superheat, slab width, mold taper, and total water flow on mold heat flux, the oscillation frequency, mold level, immersion depth of nozzle, stopper position, and argon blowing flow rate at different positions affected mold heat flux to a certain extent. The argon blowing flow rate of the stopper, stopper position, and immersion depth of the nozzle positively influence the mold heat flux. Conversely, the argon blowing flow rate of the nozzle, oscillation frequency, and total water flow rate have a negative influence. In addition, for the argon blowing flow rate in the nozzle and total water flow rate, an inflection point is reached after achieving the maximum values of 3.5 L/min and 8250-8750 L/min, respectively. This research can provide a new reference and basis for the systematic mechanism analysis of the heat transfer process and formation of longitudinal surface cracks in continuous casting and services for the fine control of high-quality steel production on site.

Key words:  mold heat transfer      continuous casting      surface longitudinal crack      low carbon steel      independent change law      big data mining     
Received:  16 August 2021     
ZTFLH:  TF701.3  
Fund: National Natural Science Foundation of China(52274318)
Corresponding Authors:  HOU Zibing, associate professor, Tel: 13628489073, E-mail: houzibing@cqu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00340     OR     https://www.ams.org.cn/EN/Y2023/V59/I10/1389

Fig.1  Calculation flowchart of the method for independent process influence (IPI) with big data in production process
Fig.2  Quantile-quantile (Q-Q) plots of each continuous casting parameter
(a) casting speed (b) immersion depth of nozzle (c) mold level
(d) oscillation frequency (e) slab width (f) position of stopper
(g) argon blowing flow rate in stopper (Qstopper)
(h) argon blowing flow rate in nozzle (Qnozzle)
(i) argon blowing flow rate in sliding plate (Qshield)
(j) superheat (k) total water flow rate (l) mold taper
Fig.3  Heat map of the Spearman correlation coefficients between different continuous casting parameters
Continuous castingMain related parameterSample size of
parameterfiltered dataset
Casting speedOscillation frequency, Qstopper, Qnozzle, and immersion depth141
Immersion depthMold level1440
Mold levelImmersion depth1253
Oscillation frequencyCasting speed, Qstopper, position of stopper, immersion depth, and total water flow rate54
Slab widthTotal water flow rate, oscillation frequency, Qshield, and immersion depth1670
Position of stopperQstopper, Qnozzle, immersion depth, and superheat612
QstopperQnozzle, total water flow rate, superheat, Qshield, and casting speed102
QnozzleQstopper, slab width, and superheat417
QshieldQnozzle and total water flow rate1123
SuperheatQnozzle and immersion depth369
Total water flow rateSlab width, Qshield, and superheat2727
Mold taperTotal water flow rate3517
Table 1  Main related parameters to each continuous casting parameter
qleftqrightqinnerqouterqave
qleft10.8890.8270.6610.923
qright0.88910.8610.7110.943
qinner0.8280.86110.8950.959
qouter0.6610.7110.89510.856
qave0.9230.9430.9590.8561
Table 2  Spearman correlation coefficients of average heat flux of different mold faces
Fig.4  Relationship between casting speed and mold heat flux (R2—fitting coefficient)
Fig.5  Relationship between superheat and mold heat flux
Fig.6  Relationships between total water flow rate (a), slab width (b), mold taper (c), immersion depth of nozzle (d), mold level (e), mold oscillation frequency (f) and mold heat flux
Fig.7  Relationships between position of stopper (a), Qstopper (b), Qnozzle (c), Qshield (d) and mold heat flux
Continuous casting parameterρ|ρ|
Casting speed0.720.72
Superheat0.630.63
Qstopper0.330.33
Qnozzle-0.280.28
Position of stopper0.260.26
Oscillation frequency-0.230.23
Total water flow rate-0.190.19
Immersion depth of nozzle0.150.15
Mold taper-0.090.09
Qshield0.080.08
Slab width-0.060.06
Mold level0.030.03
Table 3  Spearman correlation coefficients (ρ)between continuous casting parameters and mold heat flux, and their absolute values |ρ|
1 Cai K K. Quality Control of Continuous Casting Billet [M]. Beijing: Mechanical Industry Press, 2010: 163
蔡开科. 连铸坯质量控制 [M]. 北京: 冶金工业出版社, 2010: 163
2 Liu Y, Wang X D, Sun Y, et al. Research on a new detection method of slab surface crack in mould during continuous casting [J]. Metall. Res. Technol., 2018, 115: 108
doi: 10.1051/metal/2017082
3 Zappulla M L S, Hibbeler L C, Thomas B G. Effect of grade on thermal-mechanical behavior of steel during initial solidification [J]. Metall. Mater. Trans., 2017, 48A: 3777
4 Mills K C. The performance of casting powders and their effect on surface quality [J]. Steelmaking Conf. Proc., 1991, 74: 121
5 Lan P, Nguyen D A, Lee S Y, et al. Heat transfer and solidification microstructure evolution of continuously cast steel by non-steady physical simulation [J]. Met. Mater. Int., 2017, 23: 568
doi: 10.1007/s12540-017-6511-5
6 Wang W L, Long X K, Zhang H H, et al. Mold simulator study of effect of mold oscillation frequency on heat transfer and lubrication of mold flux [J]. ISIJ Int., 2018, 58: 1695
doi: 10.2355/isijinternational.ISIJINT-2018-275
7 Yu H Q, Zhu M Y. Numerical simulation of liquid steel superheat removal in slab continuous casting mold [J]. Acta Metall. Sin., 2009, 45: 476
于海岐, 朱苗勇. 板坯连铸结晶器内钢液过热消除过程的数值模拟 [J]. 金属学报, 2009, 45: 476
8 Florio B J, Vynnycky M, Mitchell S L, et al. On the interactive effects of mould taper and superheat on air gaps in continuous casting [J]. Acta Mech., 2017, 228: 233
doi: 10.1007/s00707-016-1717-z
9 Wang Y, Fang Q, Zhang H, et al. Effect of argon blowing rate on multiphase flow and initial solidification in a slab mold [J]. Metall. Mater. Trans., 2020, 51B: 1088
10 Zhang J M, Zhang L, Wang X H, et al. Study of heat flux distribution in continuous casting mold [J]. Acta Metall. Sin., 2003, 39: 1285
张炯明, 张 立, 王新华 等. 板坯连铸结晶器热流量分布的研究 [J]. 金属学报, 2003, 39: 1285
11 Jeong H, Hwang J Y, Cho J W. In-depth study of mold heat transfer for the high speed continuous casting process [J]. Met. Mater. Int., 2016, 22: 295
doi: 10.1007/s12540-016-5476-0
12 Jing C L, Luo B G, Tian Z H. Study and practice of high casting speed technology on No.3 slab caster of Shougang Jingtang Steel [J]. Iron Steel, 2014, 49(3): 46
景财良, 罗伯钢, 田志红. 首钢京唐3号铸机高拉速工艺研究与实践 [J]. 钢铁, 2014, 49(3): 46
13 Zhao H M, Wang X H, Zhang J M. Factors effecting surface quality of hypo-peritectic steel slab cast at high speed [J]. Iron Steel, 2006, 41(6): 22
赵和明, 王新华, 张炯明. 影响高速浇铸亚包晶钢表面质量的因素研究 [J]. 钢铁, 2006, 41(6): 22
14 Cheng C G, Lu H B, Li Y, et al. Mathematical modeling of flow and heat transfer behavior of liquid slag in continuous casting mold with argon blowing [J]. ISIJ Int., 2019, 59: 1266
doi: 10.2355/isijinternational.ISIJINT-2018-832
15 Phull J, Egas J, Barui S, et al. An application of decision Tree-Based twin support vector machines to classify dephosphorization in BOF steelmaking [J]. Metals, 2020, 10: 25
doi: 10.3390/met10010025
16 Wu S W, Yang J, Zhang R H, et al. Prediction of endpoint sulfur content in KR desulfurization based on the hybrid algorithm combining artificial neural network with SAPSO [J]. IEEE Access, 2020, 8: 33778
doi: 10.1109/Access.6287639
17 Liu Y H, Hu Z H, Suo Z G, et al. High-throughput experiments facilitate materials innovation: A review [J]. Sci. China Technol. Sci., 2019, 62: 521
doi: 10.1007/s11431-018-9369-9
18 Tukey J W. A quick compact two sample test to Duckworth's specifications [J]. Technometrics, 1959, 1: 31
19 Wilcoxon F. Individual comparisons by ranking methods [J]. Biomet. Bull., 1945, 1: 80
doi: 10.2307/3001968
20 Sim C H, Gan F F, Chang T C. Outlier labeling with boxplot procedures [J]. J. Am. Stat. Assoc., 2005, 100: 642
doi: 10.1198/016214504000001466
21 Shein W H, Fitrianto A. A comparative study of outliers identification methods in univariate data set [J]. Adv. Sci. Lett., 2017, 23: 1422
doi: 10.1166/asl.2017.8366
22 Schober P, Boer C, Schwarte L A. Correlation coefficients: Appropriate use and interpretation [J]. Anesth. Analg., 2018, 126: 1763
doi: 10.1213/ANE.0000000000002864 pmid: 29481436
23 Stein S, Leng C L, Thornton S, et al. A guided analytics tool for feature selection in steel manufacturing with an application to blast furnace top gas efficiency [J]. Comput. Mater. Sci., 2021, 186: 110053
doi: 10.1016/j.commatsci.2020.110053
24 Konishi J, Militzer M, Samarasekera I V, et al. Modeling the formation of longitudinal facial cracks during continuous casting of hypoperitectic steel [J]. Metall. Mater. Trans., 2002, 33B: 413
25 Wang X D, Yin S H, Kong L W, et al. Effect of carbon content and casting parameters on heat flux of mold for wide-thick slab during concasting process [J]. Spec. Steel, 2014, 35(4): 37
王旭东, 尹少华, 孔令伟 等. 碳含量及连铸工艺参数对宽厚板坯结晶器热流的影响 [J]. 特殊钢, 2014, 35(4): 37
26 Sadat M, Gheysari A H, Sadat S. The effects of casting speed on steel continuous casting process [J]. Heat Mass Transfer, 2011, 47: 1601
doi: 10.1007/s00231-011-0822-8
27 Cai K K. Continuous Casting Mold [M]. Beijing: Mechanical Industry Press, 2008: 12
蔡开科. 连铸结晶器 [M]. 北京: 冶金工业出版社, 2008: 12
28 Zhang J, Zhang C Q, Wang L, et al. Automatic control of slag line for submerged entry nozzle (SEN) [J]. Metallurgist, 2017, 60: 916
doi: 10.1007/s11015-017-0386-z
29 Gu S P, Wen G H, Guo J L, et al. Effect of shear stress on heat transfer behavior of non-Newtonian mold fluxes for peritectic steels slab casting [J]. ISIJ Int., 2020, 60: 1179
doi: 10.2355/isijinternational.ISIJINT-2019-609
30 De Winter J C F, Gosling S D, Potter J. Comparing the pearson and spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data [J]. Psychol. Methods, 2016, 21: 273
doi: 10.1037/met0000079 pmid: 27213982
[1] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[2] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[3] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[4] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[5] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[6] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[7] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[8] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[9] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[10] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[11] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[12] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[13] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
[14] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[15] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
No Suggested Reading articles found!