Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys
HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong(), LI Huijun, WANG Zumin, LIU Yongchang
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
Cite this article:
HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys. Acta Metall Sin, 2023, 59(10): 1346-1354.
Ni3Al-based superalloys are widely used in aero-engine parts. In addition to having a good temperature bearing capacity, the oxidation resistance of the alloy is also high. In this work, a multiphase Ni3Al-based superalloy was selected as the experimental material. Three micro-regions (γ' + γ dendrite, interdendritic β phase, and γ' envelope) containing different phases were obtained by heat treatment. The isothermal oxidation behavior of the micro-regions was studied under 1000oC, where the three micro-regions exhibited different oxidation behaviors at the initial stage of oxidation. The γ' envelope has an obvious double-layer oxide scale showing a cellular bulge. The outer layer is a mixed layer (NiO, NiFe2O4, and Al2O3), and the inner layer is a single Al2O3 layer. However, the γ' + γ dendrite and the interdendritic β phase form a single layer of the Al2O3 film. With increasing isothermal oxidation time, the oxide scale composition of the three micro-regions gradually tends to be the same, forming a dense single Al2O3 layer.
Fund: National Natural Science Foundation of China(51774212);National Natural Science Foundation of China(52122409);Natural Science Foundation of Tianjin City(20JCYBJC00950)
Corresponding Authors:
LI Chong, professor, Tel: 13021398676, E-mail: lichongme@tju.edu.cn
Fig.1 SEM image of the Ni3Al-based superalloy after heat treatment, showing γ' + γ dendrite, interdendritic β phase, and γ' envelope (a); a higher magnification SEM image of interdendritic β phase and γ' envelope (b); a higher magnification SEM image of γ' + γ dendrite, showing cubic γ' precipitates separated by γ channels (c)
Position in Fig.1b
Al
Fe
Cr
Ni
1 (γ' + γ dendrite)
8.5
18.6
12.4
60.5
2 (interdendritic β phase)
27.2
8.9
1.5
62.4
3 (γ' envelope)
19.4
6.6
2.2
71.8
Table 1 EDS results of chemical compositions of different regions in Ni3Al-based superalloy
Fig.2 Surface SEM image of the Ni3Al-based superalloy oxidized at 1000oC for 10 min (a) and higher magnification surface SEM images of interdendritic β phase and γ' envelope (b), interdendritic β phase (c), and γ' + γ dendrite (d)
Fig.3 Low (a, c) and high (b, d) magnified surface SEM images of the Ni3Al-based superalloy oxidized at 1000oC for 30 h (a, b) and 100 h (c, d)
Fig.4 XRD spectra of the Ni3Al-based superalloy oxidized at 1000oC for 10 min and 100 h
Fig.5 Raman spectra of surface oxide scales in different regions of the Ni3Al-based superalloy oxidized at 1000oC for 10 min (a) and 100 h (b)
Fig.6 Auger electron spectrum (AES) element-depth profiles of Ni3Al-based superalloy oxidized at 1000oC for 10 min (a) γ' + γ dendrite (b) interdendritic β phase (c) γ' envelope
Fig.7 Cross-sectional TEM image of γ' + γ dendrite oxidized at 1000oC for 10 min (a) and the EDS element mapping of the frame area depicting the distributions of elements O (b), Al (c), Cr (d), Fe (e), and Ni (f) (Inset in Fig.7a shows the selected area electron diffraction (SAED) pattern of γ' + γ dendrite)
Fig.8 Cross-sectional TEM image of interdendritic β phase oxidized at 1000oC for 10 min (a) and the EDS element mapping of the frame area depicting the distributions of elements O (b), Al (c), Cr (d), Fe (e), and Ni (f) (Inset in Fig.8a shows the SAED pattern of interdendritic β phase)
Fig.9 Cross-sectional TEM image of γ' envelope oxidized at 1000oC for 10 min (a) and the corresponding EDS element mapping depicting the distributions of elements O (b), Al (c), Cr (d), Fe (e), and Ni (f) (Inset in Fig.9a shows the SAED pattern of γ' envelope, and the rectangular frames in Fig.9a show the holes)
Fig.10 Cross-sectional SEM-BSE image of Ni3Al-based superalloy oxidized at 1000oC for 30 h (a) and the corresponding EDS element mapping depicting the distributions of elements O (b), Al (c), and Ni (d)
Fig.11 Cross-sectional SEM-BSE image of Ni3Al-based superalloy oxidized at 1000oC for 100 h (a) and the corresponding EDS element mapping depicting the distributions of elements O (b), Al (c), and Ni (d)
1
Sikka V K, Deevi S C, Viswanathan S, et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermetallics, 2000, 8: 1329
doi: 10.1016/S0966-9795(00)00078-9
2
Qian M, Luo H L, Ding C H, et al. The effect of long term high temperature annealing on twinning and detwinning of the wrought Ni3Al-based alloy [J]. Mater. Charact., 2017, 132: 458
doi: 10.1016/j.matchar.2017.09.015
3
Raju S V, Godwal B K, Singh A K, et al. High-pressure strengths of Ni3Al and Ni-Al-Cr [J]. J. Alloys Compd., 2018, 741: 642
doi: 10.1016/j.jallcom.2018.01.142
4
Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
doi: 10.1557/mrs2003.189
5
Wu Y T, Li C, Xia X C, et al. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'- strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67: 95
doi: 10.1016/j.jmst.2020.06.025
6
Wu Y T, Li C, Li Y F, et al. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 553
doi: 10.1007/s12613-020-2177-y
7
Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
Pei J L, Li Y F, Li C, et al. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys [J]. J. Mater. Sci. Technol., 2020, 52: 162
doi: 10.1016/j.jmst.2020.04.006
9
Takeyama M, Liu C T. Surface oxidation and ductility loss in boron-doped Ni3Al at 760oC [J]. Scr. Metall., 1989, 23: 727
doi: 10.1016/0036-9748(89)90520-6
10
Liu C T, White C L. Dynamic embrittlement of boron-doped Ni3Al alloys at 600oC [J]. Acta Metall., 1987, 35: 643
doi: 10.1016/0001-6160(87)90187-8
11
Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68: 91
doi: 10.1016/j.jmst.2020.08.013
12
Mu N, Izumi T, Zhang L, et al. Compositional factors affecting the oxidation behavior of Pt-modified γ-Ni plus γ'-Ni3Al-based alloys and coatings [J]. Mater. Sci. Forum, 2008, 595-598: 239
doi: 10.4028/www.scientific.net/MSF.595-598
13
Choi S C, Cho H J, Kim Y J, et al. High-temperature oxidation behavior of pure Ni3Al [J]. Oxid. Met., 1996, 46: 51
doi: 10.1007/BF01046884
14
Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys [J]. Acta Metall. Sin., 2011, 47: 1216
Moussa S O, Morsi K. High-temperature oxidation of reactively processed nickel aluminide intermetallics [J]. J. Alloys Compd., 2006, 426: 136
doi: 10.1016/j.jallcom.2006.02.008
16
Xu Y, Sakurai J, Teraoka Y, et al. Initial oxidation behavior of Ni3Al (210) surface induced by supersonic oxygen molecular beam at room temperature [J]. Appl. Surf. Sci., 2017, 391: 18
doi: 10.1016/j.apsusc.2016.01.259
17
Huang Z Y, Jiang Y S, Hou A L, et al. Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels [J]. J. Mater. Sci. Technol., 2017, 33: 1531
doi: 10.1016/j.jmst.2017.09.012
18
Wang X, Szpunar J A. Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N [J]. J. Alloys Compd., 2018, 752: 40
doi: 10.1016/j.jallcom.2018.04.173
19
Dong H, Ye Z F, Wang P, et al. Effect of cold rolling on the oxidation resistance of T91 steel in oxygen-saturated stagnant liquid lead-bismuth eutectic at 450oC and 550oC [J]. J. Nucl. Mater., 2016, 476: 213
doi: 10.1016/j.jnucmat.2016.04.046
20
Zhao K, Zhou Y B, Ma Y H, et al. Effect of microstructure on the oxidation behavior of two nickel-based superalloys [J]. Corrosion, 2005, 61: 961
doi: 10.5006/1.3280896
21
Bouchaud B, Balmain J, Barrere D, et al. Effect of water drops on the oxidation mechanisms of a ceria coated nickel-based superalloy [J]. Corros. Sci., 2013, 68: 176
doi: 10.1016/j.corsci.2012.11.010
22
da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40: 447
doi: 10.1016/S0010-938X(97)00158-3
23
Maslar J E, Hurst W S, Bowers W J, et al. In situ Raman spectroscopic investigation of stainless steel hydrothermal corrosion [J]. Corrosion, 2002, 58: 739
doi: 10.5006/1.3277656
24
Guo J Y, Li Y F, Li C, et al. Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys [J]. Mater. Charact., 2021, 171: 110748
doi: 10.1016/j.matchar.2020.110748
25
Maslar J E, Hurst W S, Bowers W J, et al. In situ Raman spectroscopic investigation of nickel hydrothermal corrosion [J]. Corrosion, 2002, 58: 225
doi: 10.5006/1.3279873
26
Kim J H, Hwang I S. Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water [J]. Nucl. Eng. Des., 2005, 235: 1029
doi: 10.1016/j.nucengdes.2004.12.002
27
Song P, Chen R, Feng J, et al. Microstructure analysis of initial alumina of Pt-modified aluminide coatings on Ni-based alloy [J]. Acta Metall. Sin., 2017, 53: 1504
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge, UK: Cambridge University Press, 2006: 2
30
Bei H, George E P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy [J]. Acta Mater., 2005, 53: 69
doi: 10.1016/j.actamat.2004.09.003
31
Konrad C H, Völkl R, Glatzel U. Determination of oxygen diffusion along nickel/zirconia phase boundaries by internal oxidation [J]. Oxid. Met., 2012, 77: 149
doi: 10.1007/s11085-011-9278-y
32
Liu Y C, Wei W F, Benum L, et al. Oxidation behavior of Ni-Cr-Fe-based alloys: Effect of alloy microstructure and silicon content [J]. Oxid. Met., 2010, 73: 207
doi: 10.1007/s11085-009-9172-z
33
Ding Q Q, Shen Z J, Xiang S S, et al. In-situ environmental TEM study of γ'-γ phase transformation induced by oxidation in a nickelbased single crystal superalloy [J]. J. Alloys Compd., 2015, 651: 255
doi: 10.1016/j.jallcom.2015.07.017
34
Zhang J Y. Physical Chemistry in Metallurgy [M]. Beijing: Metallurgical Industry Press, 2004: 312
张家芸. 冶金物理化学 [M]. 北京: 冶金工业出版社, 2004: 312
35
Wallwork G R, Hed A Z. Some Limiting factors in the use of alloys at high temperatures [J]. Oxid. Met., 1971, 3: 171
doi: 10.1007/BF00603485