Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (5): 660-672    DOI: 10.11900/0412.1961.2021.00117
Research paper Current Issue | Archive | Adv Search |
Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact
CHEN Yang, MAO Pingli(), LIU Zheng, WANG Zhi, CAO Gengsheng
Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact. Acta Metall Sin, 2022, 58(5): 660-672.

Download:  HTML  PDF(4382KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To investigate the detwinning behaviors and dynamic mechanical properties of a precompressed rolled AZ31 magnesium alloy sheet impacted under high strain rates, the as-received sheet was precompressed along the rolling direction (RD) to the true strain of 4% for inducing { 101¯2} tensile twins. The as-received and precompressed rolled AZ31 magnesium alloy sheets were impacted along the normal direction (ND) using a split Hopkinson pressure bar experiment apparatus at strain rates of 700, 1000, 1300, and 1600 s-1. Microstructural characteristics of the as-received, precompressed, and impacted specimens were analyzed and compared by an electron backscatter diffraction technology. The results show that in the precompressed specimen, the density of the basal texture was weakened and a new twin texture with the c-axis paralled to RD was formed. The average grain size of the precompressed specimen decreased visibly as a result of the parent grains being subdivided by tensile twin boundaries. The dominant deformation mechanism of the precompressed rolled AZ31 magnesium alloy impacted along ND is detwinning. With increasing the strain rate, the initial basal texture recovered, the average grain size increased, and the average twin thickness decreased. Compared with the precompressed specimen, the as-received specimen impacted along ND exhibited higher strength and lower formability. The precompressed specimen demonstrated greater strain rate sensitivity during plastic deformation.

Key words:  AZ31 magnesium alloy      precompression      high strain rate impact      detwinning     
Received:  23 March 2021     
ZTFLH:  TG146.2  
Fund: Liaoning Revitalization Talents Program(XLYC1908006)
About author:  MAO Pingli, professor, Tel: 13940396212, E-mail: maopl@sut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00117     OR     https://www.ams.org.cn/EN/Y2022/V58/I5/660

Fig.1  EBSD analysis results of the rolled AZ31 magnesium alloy sheet after homogenization (TD and RD represent transverse direction and rolling direction of the sheet, respectively)
(a) inverse pole figure (b) grain boundary figure
(c) grain size distribution (d) {0001} pole figure
(e) misorientation angle distribution
Fig.2  EBSD analysis results of the rolled AZ31 magnesium alloy sheet precompressed along RD with a true strain of 4%
(a) inverse pole figure (b) grain boundary figure
(c) grain size distribution (d) {0001} pole figure
(e) misorientation angle distribution
Fig.3  Local enlarged figure of the rectangular region in Fig.2a (a) and misorientation angle distribution along the direction indicated by the arrow in Fig.3a (b)
Fig.4  EBSD analysis results of the precompressed rolled AZ31 magnesium alloy impacted along normal direction (ND) under the strain rate of 700 s-1
(a) inverse pole figure (b) grain boundary figure
(c) grain size distribution (d) {0001} pole figure
(e) misorientation angle distribution
Fig.5  EBSD analysis results of the precompressed rolled AZ31 magnesium alloy impacted along ND under the strain rate of 1000 s-1
(a) inverse pole figure (b) grain boundary figure
(c) grain size distribution (d) {0001} pole figure
(e) misorientation angle distribution
Fig.6  EBSD analysis results of the precompressed rolled AZ31 magnesium alloy specimen impacted along ND under the strain rate of 1300 s-1
(a) inverse pole figure (b) grain boundary figure
(c) grain size distribution (d) {0001}pole figure
(e) misorientation angle distribution
Fig.7  EBSD analysis results of the precompressed rolled AZ31 magnesium alloy specimen impacted along ND under the strain rate of 1600 s-1
(a) inverse pole figure (b) grain boundary figure
(c) grain size distribution (d) {0001}pole figure
(e) misorientation angle distribution
Fig.8  Number of tensile twins in precompressed rolled AZ31 magnesium alloy specimen (a) and impacted along ND under 700 s-1 (b), 1000 s-1 (c), 1300 s-1 (d), and 1600 s-1 (e)
Fig.9  Remaining tensile twin area fractions and twin thicknesses of the precompressed AZ31 magnesium alloy specimen impacted along ND under different strain rates
Fig.10  True stress-strain curves of the as-received (a) and precompressed (b) AZ31 magnesium alloy impacted along ND under different strain rates
Specimenε˙ = 700 s-1ε˙ = 1000 s-1ε˙ = 1300 s-1ε˙ = 1600 s-1
σsσpσsσpσsσpσsσp
As-received113.2345.6128.9419.7135.4458.6144.5498.1
Precompressed98.7228.1102.5348.8107.3415.2112.2488.8
Table 1  Yield stress and peak stress of the as-received and precompressed AZ31 magnesium alloy specimen impacted along ND under different strain rates
Specimenε = 0.005ε = 0.01ε = 0.025ε = 0.05m¯
As-received0.2270.2690.2320.1660.224
Precompressed0.3010.1790.2950.4380.303
Table 2  Strain rate sensitivity indexs of the as-received and precompressed AZ31 magnesium alloy specimen impacted along ND under different true strains (ε) at ε˙1 = 700 s-1, ε˙2 = 1600 s-1
Fig.11  Schematics showing the change of orientation during detwinning
(a) initial orientation (b) after precompression along RD (c) after impaction along ND
1 Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy [J]. Mater. Sci. Eng., 2009, A523: 304
2 Khosravani A, Fullwood D T, Adams B L, et al. Nucleation and propagation of { 10 1 ¯ 2 } twins in AZ31 magnesium alloy [J]. Acta Mater., 2015, 100: 202
doi: 10.1016/j.actamat.2015.08.024
3 Shan Z W, Liu B Y. The mechanism of { 10 1 ¯ 2 } deformation twinning in magnesium [J]. Acta Metall. Sin., 2016, 52: 1267
单智伟, 刘博宇. Mg的{ 10 1 ¯ 2 }形变孪晶机制 [J]. 金属学报, 2016, 52: 1267
4 Li X D, Mao P L, Liu Y Y, et al. Anisotropy and deformation mechanisms of as-extruded Mg-3Zn-1Y magnesium alloy under high strain rates [J]. Acta Metall. Sin., 2018, 54: 557
李旭东, 毛萍莉, 刘晏宇 等. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制 [J]. 金属学报, 2018, 54: 557
doi: 10.11900/0412.1961.2017.00147
5 Luque A, Ghazisaeidi M, Curtin W A. A new mechanism for twin growth in Mg alloys [J]. Acta Mater., 2014, 81: 442
doi: 10.1016/j.actamat.2014.08.052
6 Lou C, Zhang X Y, Ren Y. Twinning characteristic of AZ31 magnesium alloy during dynamic plastic deformation [J]. Chin. J. Nonferrous Met., 2015, 25: 2642
娄 超, 张喜燕, 任 毅. 动态塑性变形下AZ31镁合金的孪生特征 [J]. 中国有色金属学报, 2015, 25: 2642
7 Wu W, Gao Y F, Li N, et al. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys [J]. Acta Mater., 2016, 121: 15
doi: 10.1016/j.actamat.2016.08.058
8 Huang H T, Godfrey A, Zheng J P, et al. Influence of local strain on twinning behavior during compression of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2015, A640: 330
9 Wang B S, Deng L P, Chapuis A, et al. Study of twinning behavior of AZ31 Mg alloy during plane strain compression [J]. Acta Metall. Sin., 2015, 51: 1441
汪炳叔, 邓丽萍, Chapuis A 等. AZ31镁合金在平面应变压缩过程中的孪生行为研究 [J]. 金属学报, 2015, 51: 1441
doi: 10.11900/0412.1961.2015.00215
10 Yan Y Q, Luo J R, Zhang J S, et al. Study on the microstructural evolution and mechanical properties control of a strong textured AZ31 magnesium alloy sheet during cryorolling [J]. Acta Metall. Sin., 2017, 53: 107
闫亚琼, 罗晋如, 张济山 等. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究 [J]. 金属学报, 2017, 53: 107
doi: 10.11900/0412.1961.2016.00134
11 Hong S G, Park S H, Lee C S. Role of { 10 1 ¯ 2 } twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy [J]. Acta Mater., 2010, 58: 5873
doi: 10.1016/j.actamat.2010.07.002
12 Hou D W, Li Q Z, Wen H M. Study of reversible motion of { 10 1 ¯ 2 } tensile twin boundaries in a magnesium alloy during strain path changes [J]. Mater. Lett., 2018, 231: 84
doi: 10.1016/j.matlet.2018.08.019
13 Lee J U, Song S W, Kim Y, et al. Effects of { 10 1 ¯ 2 } twins on dynamic torsional properties of extruded AZ31 magnesium alloy [J]. Met. Mater. Int., 2018, 24: 283
doi: 10.1007/s12540-018-0030-x
14 Mokdad F, Chen D L, Li D Y. Twin-twin interactions and contraction twin formation in an extruded magnesium alloy subjected to an alteration of compressive direction [J]. J. Alloys Compd., 2018, 737: 549
doi: 10.1016/j.jallcom.2017.12.043
15 Chen H C, Liu T M, Hou D W, et al. Improving the mechanical properties of a hot-extruded AZ31 alloy by { 10 1 ¯ 2 } twinning lamella [J]. J. Alloys Compd., 2016, 680: 191
doi: 10.1016/j.jallcom.2016.04.106
16 Park S H, Hong S G, Lee J H, et al. Texture evolution of rolled Mg-3Al-1Zn alloy undergoing a { 10 1 ¯ 2 } twinning dominant strain path change [J]. J. Alloys Compd., 2015, 646: 573
doi: 10.1016/j.jallcom.2015.05.194
17 Long Z X, Liu T M, He J J, et al. The effects of pre-strain and subsequent annealing on the yielding behavior in a rolled magnesium alloy AZ31 [J]. J. Mater. Eng. Perform., 2015, 24: 16
doi: 10.1007/s11665-014-1284-1
18 Song B, Xin R L, Sun L Y, et al. Enhancing the strength of rolled ZK60 alloys via the combined use of twinning deformation and aging treatment [J]. Mater. Sci. Eng., 2013, A582: 68
19 Sun Q, Xia T, Tan L, et al. Influence of { 10 1 ¯ 2 } twin characteristics on detwinning in Mg-3Al-1Zn alloy [J]. Mater. Sci. Eng., 2018, A735: 243
20 Sarker D, Friedman J, Chen D L. De-twinning and texture change in an extruded AM30 magnesium alloy during compression along normal direction [J]. J. Mater. Sci. Technol., 2015, 31: 264
doi: 10.1016/j.jmst.2014.11.018
21 Huang H T, Godfrey A, Liu W, et al. Study on twinning behaviors during multi-directional compression for AZ31 magnesium alloy by EBSD [J]. J. Chin. Electron Microsc. Soc., 2011, 30: 294
黄洪涛, Godfrey A, 刘 伟 等. 多向压缩路径下AZ31镁合金孪生行为的EBSD研究 [J]. 电子显微学报, 2011, 30: 294
22 Lou C, Zhang X Y, Wang R H, et al. Effects of untwinning and { 10 1 ¯ 2 } twin lamellar structure on the mechanical properties of Mg alloy [J]. Acta Metall. Sin., 2013, 49: 291
doi: 10.3724/SP.J.1037.2012.00582
娄 超, 张喜燕, 汪润红 等. 退孪生行为以及{ 10 1 ¯ 2 }孪晶片层结构对镁合金力学性能的影响 [J]. 金属学报, 2013, 49: 291
23 Proust G, Tomé C N, Jain A, et al. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 [J]. Int. J. Plast., 2009, 25: 861
doi: 10.1016/j.ijplas.2008.05.005
24 Wang R F, Mao P L, Liu Y Y, et al. Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys [J]. Mater. Sci. Eng., 2018, A742: 309
25 Yu Q, Wang J, Jiang Y Y, et al. Twin-twin interactions in magnesium [J]. Acta Mater., 2014, 77: 28
doi: 10.1016/j.actamat.2014.05.030
26 Guan D K, Rainforth W M, Gao J H, et al. Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1—double twins [J]. Acta Mater., 2017, 135: 14
doi: 10.1016/j.actamat.2017.06.015
27 Wang X X, Mao P L, Wang R F, et al. Role of { 10 1 ¯ 2 } twinning in the anisotropy and asymmetry of AZ31 magnesium alloy under high strain rate deformation [J]. Mater. Sci. Eng., 2020, A772: 138814
28 Xiao J, Shu D W. Compressive behavior and constitutive analysis of AZ31B magnesium alloy over wide range of strain rates and temperatures [J]. Met. Mater. Int., 2015, 21: 823
doi: 10.1007/s12540-015-5120-4
29 Zhang Y, Liu T M, Xu S, et al. Detwinning behavior of an extruded AZ31 magnesium alloy during uniaxial compression [J]. Trans. Mater. Heat Treat., 2013, 34(8): 26
张 愔, 刘天模, 徐 舜 等. 挤压态AZ31镁合金单向压缩过程中的退孪生行为 [J]. 材料热处理学报, 2013, 34(8): 26
30 Guo L L, Chen Z C, Gao L. Effects of grain size, texture and twinning on mechanical properties and work-hardening behavior of AZ31 magnesium alloys [J]. Mater. Sci. Eng., 2011, A528: 8537
31 Xi G Q, Chen Y, Chen S, et al. Study on twinning-detwinning behavior of magnesium alloy by Situ EBSD [J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2020, 34(9): 147
席国强, 陈 艺, 陈 爽 等. 镁合金中孪生-退孪生行为的原位EBSD研究 [J]. 重庆理工大学学报(自然科学版), 2020, 34(9): 147
32 Chen Y, Mao P L, Wang Z, et al. High strain rate deformation behaviors experimental study and numerical simulation of rolled AZ31 magnesium alloy loaded along different directions [J]. Chin. J. Nonferrous Met., 2020, 30: 997
陈 扬, 毛萍莉, 王志 等. 不同加载方向时轧制态AZ31镁合金高速变形行为的实验研究与数值模拟 [J]. 中国有色金属学报, 2020, 30: 997
[1] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[2] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[3] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[4] Yaqiong YAN,Jinru LUO,Jishan ZHANG,Linzhong ZHUANG. Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling[J]. 金属学报, 2017, 53(1): 107-113.
[5] Jingsheng BAI,Qiuhong LU,Lei LU. DETWINNING BEHAVIOR INDUCED BY LOCAL SHEAR STRAIN IN NANOTWINNED Cu[J]. 金属学报, 2016, 52(4): 491-496.
[6] HUANG Hongtao, Godfrey Andrew, LIU Wei, FU Baoqin,LIU Qing. DEFORMATION BEHAVIOR OF AZ31 MAGNESIUM ALLOY DURING MULTIAXIAL COMPRESSION BY EBSD TRACKING[J]. 金属学报, 2013, 49(8): 932-938.
[7] HUANG Hongtao Godfrey Andrew LIU Wei TANG Ruihe LIU Qing. EFFECT OF SAMPLE ORIENTATION ON STATIC RECRYSTALLIZATION OF AZ31 MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(8): 915-921.
[8] SUN Chaoyang LUAN Jingdong LIU Geng LI Rui ZHANG Qingdong. PREDICTED CONSTITUTIVE MODELING OF HOT DEFORMATION FOR AZ31 MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(7): 853-860.
[9] . THE EFFECT OF {10¯11}–{10¯12} DOUBLE TWINNING ON THE MICROSTRUCTURE, TEXTURE AND MECHANICAL PROPERTIES OF AZ31 MAGNESIUM ALLOY SHEET DURING ROLLING DEFORMATION[J]. 金属学报, 2011, 47(12): 1567-1574.
[10] WANG Lina YANG Ping XIA Weijun CHEN Zhenhua CHEN Ding LI Xiao MENG Li. TEXTURES AND DEFORMATION MECHANISMS OF AZ31 MAGNESIUM ALLOYS UNDER SPECIAL PROCESSING TECHNOLOGIES[J]. 金属学报, 2009, 45(1): 58-62.
No Suggested Reading articles found!