|
|
Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler |
ZHANG Shihong1,2( ), HU Kai1,2, LIU Xia1, YANG Yang1 |
1.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China 2.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China |
|
Cite this article:
ZHANG Shihong, HU Kai, LIU Xia, YANG Yang. Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler. Acta Metall Sin, 2022, 58(3): 272-294.
|
Abstract Since the “emission peak-carbon neutrality” goal was proposed, coal-fired boilers, which are major power supply equipment and CO2 emission sites, have been gradually developed to zero-carbon emission biomass and low-carbon coal/biomass cofired boiler. The corrosion and erosion behavior of the sulfur and chlorine components of coal and biomass poses a serious threat to the safety and long-term operation of boilers, and protective coatings have become a convenient and efficient way to improve the corrosion and erosion resistance of boilers. This paper reviews recent research progress on high-temperature corrosion and erosion of bare materials and protective coatings used in coal-fired, biomass, and coal/biomass cofired boilers. The mechanism of sulfur corrosion and alkali chlorine corrosion in coal-burning and biomass combustion environments is summarized. The ash deposition-impaction mechanism in coal/biomass cofired environments is described. The current application status of boiler bare materials is introduced, and the design principles, preparation processes, and application status of alloy, ceramic, and metal-ceramic coatings in corrosive and erosive environments are summarized. Based on the current findings, future research on corrosion and erosion of boilers should focus on imperfect hot corrosion mechanisms, accurate corrosion-wear prediction models and types of protective coatings. Finally, material genome engineering and machine learning are proposed to accelerate material research/development and study the corrosion-erosion mechanisms as well as multifactor coupling models. There is a need to integrate powder synthesis methods, coating structure designs, and in-service performance into the development of new protective coatings.
|
Received: 28 October 2021
|
|
Fund: National Natural Science Foundation of China(52171058) |
About author: ZHANG Shihong, professor, Tel: 13637101221, E-mail: zsh13637101221@163.com
|
1 |
Tong D, Zhang Q, Zheng Y X, et al. Committed emissions from existing energy infrastructure jeopardize 1.5oC climate target [J]. Nature, 2019, 572: 373
|
2 |
Maurya P K, Mondal S, Kumar V, et al. Roadmap to sustainable carbon-neutral energy and environment: Can we cross the barrier of biomass productivity? [J]. Environ. Sci. Pollut. Res., 2021, 28: 49327
|
3 |
Liu Z, Ciais P, Deng Z, et al. Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production [J]. Sci. Data, 2020, 7: 392
|
4 |
Tong D, Zhang Q, Davis S J, et al. Targeted emission reductions from global super-polluting power plant units [J]. Nat. Sustain., 2018, 1: 59
|
5 |
Pfeiffer A, Hepburn C, Vogt-Schilb A, et al. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement [J]. Environ. Res. Lett., 2018, 13: 054019
|
6 |
Edenhofer O, Steckel J C, Jakob M, et al. Reports of coal's terminal decline may be exaggerated [J]. Environ. Res. Lett., 2018, 13: 024019
|
7 |
Davis S J, Caldeira K, Matthews H D. Future CO2 emissions and climate change from existing energy infrastructure [J]. Science, 2010, 329: 1330
|
8 |
The United Nations. Paris Agreement [EB/OL]. The 21st United Nations Climate Change Conference, Paris, 2015.
|
9 |
Ministry of Ecology and Environment of the People's Republic of China. China's policy and action on handling climate change 2020 annual report [EB/OL]. (2021-07-13).
|
|
中华人民共和国生态环境部. 中国应对气候变化的政策与行动2020年度报告 [EB/OL]. (2021-07-13).
|
10 |
Global Energy Interconnection Development and Cooperation Organization. Research on China's “14th five-year plan” for electric power development [R]. Beijing: Global Energy Interconnection Development and Cooperation Organization, 2020
|
|
全球能源互联网发展合作组织. 中国“十四五”电力发展规划研究 [R]. 北京: 全球能源互联网发展合作组织, 2020
|
11 |
The Comprehensive Research Group for Energy Consulting and Research. Strategic research on promoting energy revolution of production and consumption [J]. Strat Study CAE, 2015, 17(9): 11
|
|
“能源领域咨询研究”综合组. 推动能源生产和消费革命战略研究 [J]. 中国工程科学, 2015, 17(9): 11
|
12 |
Zhao X G, Li A. A multi-objective sustainable location model for biomass power plants: Case of China [J]. Energy, 2016, 112: 1184
|
13 |
Tan Q L, Wang T R, Zhang Y M, et al. Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China [J]. Energy, 2017, 139: 1066
|
14 |
Yi Q, Zhao Y J, Huang Y, et al. Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom [J]. Appl. Energy, 2018, 225: 258
|
15 |
Goerndt M E, Aguilar F X, Skog K. Drivers of biomass co-firing in U.S. coal-fired power plants [J]. Biomass Bioenergy, 2013, 58: 158
|
16 |
Wu C Z, Zhou Z Q, Ma L L, et al. Comparative study on biomass power generation technologies [J]. Renew. Energy Resour., 2008, 26(3): 34
|
|
吴创之, 周肇秋, 马隆龙等. 生物质发电技术分析比较 [J]. 可再生能源, 2008, 26(3): 34
|
17 |
Roni M S, Chowdhury S, Mamun S, et al. Biomass co-firing technology with policies, challenges, and opportunities: A global review [J]. Renew. Sust. Energy Rev., 2017, 78: 1089
|
18 |
Mun T Y, Tumsa T Z, Lee U, et al. Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant [J]. Energy, 2016, 115: 954
|
19 |
Cebrucean D, Cebrucean V, Ionel I. Modeling and performance analysis of subcritical and supercritical coal-fired power plants with biomass co-firing and CO2 capture [J]. Clean Technol. Environ. Policy, 2020, 22: 153
|
20 |
Fogarasi S, Cormos C C. Technico-economic assessment of coal and sawdust co-firing power generation with CO2 capture [J]. J. Clean. Prod., 2015, 103: 140
|
21 |
National Energy Administration. The “13th Five-Year Plan” for biomass energy development [EB/OL]. (2016-12-06).
|
|
国家能源局. 国家能源局关于印发《生物质能发展“十三五”规划》的通知 [EB/OL]. (2016-12-06).
|
22 |
Zhang S X, Shi L, Xu Y F, et al. Application of power generation by coupling direct-combustion of biomass, solid waste and coal [J]. Power Syst. Eng., 2021, 37(4): 12
|
|
张世鑫, 史 磊, 许燕飞等. 煤和生物质、固废直燃耦合发电技术应用 [J]. 电站系统工程, 2021, 37(4): 12
|
23 |
Yang W L, Ni Y, Cao S. Progress of biomass direct co-firing for coal-fired boilers [J]. Renew. Energy Resour., 2021, 39: 1007
|
|
杨卧龙, 倪 煜, 曹 泷. 生物质直接混烧技术在燃煤电站的应用研究进展 [J]. 可再生能源, 2021, 39: 1007
|
24 |
Agbor E, Oyedun A O, Zhang X L, et al. Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas [J]. Appl. Energy, 2016, 169: 433
|
25 |
Zhang D W, Fan H D, Zhao B, et al. Development of biomass power generation technology at home and abroad [J]. Huadian Technol., 2021, 43(3): 70
|
|
张东旺, 范浩东, 赵 冰等. 国内外生物质能源发电技术应用进展 [J]. 华电技术, 2021, 43(3): 70
|
26 |
Ma H D, Wang Y G, Zhao Q X, et al. Characteristics of ash deposit and dew point corrosion in biofuel boiler [J]. CIESC J., 2016, 67: 5237
|
|
马海东, 王云刚, 赵钦新等. 生物质锅炉积灰特性与露点腐蚀 [J]. 化工学报, 2016, 67: 5237
|
27 |
Deng J X, Ding Z L, Zhou H M, et al. Performance and wear characteristics of ceramic, cemented carbide, and metal nozzles used in coal-water-slurry boilers [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 919
|
28 |
Nagarajan R, Ambedkar B, Gowrisankar S, et al. Development of predictive model for fly-ash erosion phenomena in coal-burning boilers [J]. Wear, 2009, 267: 122
|
29 |
Niu Y Q, Tan H Z, Hui S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures [J]. Prog. Energy Combust. Sci., 2016, 52: 1
|
30 |
Chen H, Pan P Y, Zhao Q X, et al. Coupling mechanism of viscose ash deposition and dewpoint corrosion in industrial coal-fired boiler [J]. CIESC J., 2017, 68: 4774
|
|
陈 衡, 潘佩媛, 赵钦新等. 燃煤工业锅炉黏性积灰和露点腐蚀耦合机理 [J]. 化工学报, 2017, 68: 4774
|
31 |
Xiong X H, Lv Z M, Tan H Z, et al. A typical super-heater tube leakage and high temperature corrosion mechanism investigation in a 260 t/h circulated fluidized boiler [J]. Eng. Fail. Anal., 2020, 109: 104255
|
32 |
Zhang X J, Liu H, Chen T Z, et al. Application of coatings to alleviate fireside corrosion on heat transfer tubes during the combustion of low-grade solid fuels: A review [J]. Energy Fuels, 2020, 34: 11752
|
33 |
Hu S H, Ni Y G, Yin Q, et al. Research on element migration and ash deposition characteristics of high-alkali coal in horizontal liquid slagging cyclone furnace [J]. Fuel, 2022, 308: 121962
|
34 |
Feng Y L, Wei Q, Li H, et al. Summarization of the research on high-temperature erosion test method and mechanisms [J]. Boiler Technol., 2008, 39(4): 62
|
|
冯艳玲, 魏 琪, 李 辉等. 高温冲蚀磨损测试方法及机理的研究概述 [J]. 锅炉技术, 2008, 39(4): 62
|
35 |
Vicenzi J, Villanova D L, Lima M D, et al. HVOF-coatings against high temperature erosion (~300oC) by coal fly ash in thermoelectric power plant [J]. Mater. Des., 2006, 27: 236
|
36 |
Pérez M G, Vakkilainen E, Hyppänen T. Unsteady CFD analysis of Kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle rebound-stick model [J]. Fuel, 2016, 181: 408
|
37 |
Dizaji H B, Zeng T, Hölzig H, et al. Ash transformation mechanism during combustion of rice husk and rice straw [J]. Fuel, 2022, 307: 121768
|
38 |
Pyykönen J, Jokiniemi J. Modelling alkali chloride superheater deposition and its implications [J]. Fuel Process. Technol., 2003, 80: 225
|
39 |
Maj I, Kalisz S, Szymajda A, et al. The influence of cow dung and mixed straw ashes on steel corrosion [J]. Renew Energy, 2021, 177: 1198
|
40 |
Liu G Q, Li S Q, Yao Q. A JKR-based dynamic model for the impact of micro-particle with a flat surface [J]. Powder Technol., 2011, 207: 215
|
41 |
Konstandopoulos A G. Deposit growth dynamics: Particle sticking and scattering phenomena [J]. Powder Technol., 2000, 109: 262
|
42 |
Forstner M, Hofmeister G, Jöller M, et al. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers [J]. Prog. Comput. Fluid Dynam., 2006, 6: 248
|
43 |
Cai Y T, Tay K, Zheng Z M, et al. Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review [J]. Appl. Energy, 2018, 230: 1447
|
44 |
Doshi V, Vuthaluru H B, Korbee R, et al. Development of a modeling approach to predict ash formation during co-firing of coal and biomass [J]. Fuel Process. Technol., 2009, 90: 1148
|
45 |
Mahajan S, Chhibber R. Hot corrosion studies of boiler steels exposed to different molten salt mixtures at 950oC [J]. Eng. Fail. Anal., 2019, 99: 210
|
46 |
Meißner T M, Grégoire B, Montero X, et al. Long-term corrosion behavior of Cr diffusion coatings on ferritic-martensitic superheater tube material X20CrMoV12-1 under conditions mimicking biomass (co-)firing [J]. Energy Fuels, 2020, 34: 10989
|
47 |
Montero X, Ishida A, Rudolphi M, et al. Breakaway corrosion of austenitic steel induced by fireside corrosion [J]. Corros. Sci., 2020, 173: 108765
|
48 |
Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700oC coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
|
|
曹 超, 蒋成洋, 鲁金涛等. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为 [J]. 金属学报, 2022, 58: 67
|
49 |
Hagman H, Boström D, Lundberg M, et al. Alloy degradation in a co-firing biomass CFB vortex finder application at 880oC [J]. Corros. Sci., 2019, 150: 136
|
50 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630~700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
|
刘正东, 陈正宗, 何西扣等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
|
51 |
Gao B, Wang L, Song X, et al. Effect of pre-oxidation on high temperature oxidation and corrosion behavior of Co-Al-W-based superalloy [J]. Acta Metall. Sin., 2019, 55: 1273
|
|
高 博, 王 磊, 宋 秀等. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1273
|
52 |
Mudgal D, Verma P K, Singh S, et al. High temperature degradation of Co based superalloy in incinerator environment [J]. Adv. Mater. Res., 2012, 585: 542
|
53 |
Lu J T, Huang J Y, Yang Z, et al. Simulated fireside corrosion behavior of a wrought Ni-Fe-based superalloy for 700oC-class ultra-supercritical power plant applications [J]. J. Mater. Eng. Perform., 2019, 28: 7390
|
54 |
Zhou H X, Wang J W, Meng X H, et al. The corrosion mechanism of Fe-based superalloy in molten NaCl-52wt-%MgCl2 at 520oC [J]. Corros. Eng. Sci. Technol., 2017, 52: 261
|
55 |
Cheng H S, Liu G, Lei G, et al. Research progress of high temperature corrosion protection coating technology for coal-burning boiler heating surface [J]. Mater. Rep., 2020, 34(): 433
|
|
程海松, 刘 岗, 雷 刚等. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展 [J]. 材料导报, 2020, 34(): 433
|
56 |
Singh J, Vasudev H, Singh S. Performance of different coating materials against high temperature oxidation in boiler tubes—A review [J]. Mater. Today Proc., 2020, 26: 972
|
57 |
Szymański K, Hernas A, Moskal G, et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers—A review [J]. Surf. Coat. Technol., 2015, 268: 153
|
58 |
Kumar S, Handa A, Chawla V, et al. Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: A review [J]. Surf. Eng., 2021, 37: 833
|
59 |
Li H, Liu D, Yao D Y. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2021, 41: 6245
|
|
李 晖, 刘 栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判 [J]. 中国电机工程学报, 2021, 41: 6245
|
60 |
Long H, Huang J J. Development direction analysis of coal-fired power units' design technology during the 13th Five-Year Plan [J]. Power Generat. Technol., 2018, 39: 13
|
|
龙 辉, 黄晶晶. “十三五”燃煤发电设计技术发展方向分析 [J]. 发电技术, 2018, 39: 13
|
61 |
Lu J T, Gu Y F, Yang Z. Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advanced ultra-supercritical power station [J]. Corros. Sci. Protect. Technol., 2014, 26: 205
|
|
鲁金涛, 谷月峰, 杨 珍. 3种700℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为 [J]. 腐蚀科学与防护技术, 2014, 26: 205
|
62 |
Li J, Zhou R C, Tang L Y, et al. Research on high temperature fireside corrosion of water wall materials for ultra-supercritical coal fired boiler [J]. Hot Working Technol., 2017, 46(16): 19
|
|
李 江, 周荣灿, 唐丽英等. 超超临界燃煤锅炉水冷壁材料高温烟气腐蚀研究 [J]. 热加工工艺, 2017, 46(16): 19
|
63 |
Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
|
64 |
Mannava V, Rao A S, Paulose N, et al. Hot corrosion studies on Ni-base superalloy at 650oC under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3) [J]. Corros. Sci., 2016, 105: 109
|
65 |
Yan W P, Ma K, Gao Z Y, et al. Erosion of economizer tube bundles in pressurized oxy-fuel coal-fired boiler [J]. J. Xi'an Jiaotong Univ., 2013, 47(3): 53
|
|
阎维平, 马 凯, 高正阳等. 增压富氧燃煤锅炉省煤器管束磨损研究 [J]. 西安交通大学学报, 2013, 47(3): 53
|
66 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Oxford: Elsevier Science, 2008: 361
|
67 |
Liang Z Y, Yu M, Zhao Q X. Investigation of fireside corrosion of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN in ultra-supercritical power plants [J]. Eng. Fail. Anal., 2019, 100: 180
|
68 |
Syed A U, Simms N J, Oakey J E. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass [J]. Fuel, 2012, 101: 62
|
69 |
Singh G, Bala N, Chawla V, et al. Hot corrosion behavior of HVOF-sprayed carbide based composite coatings for boiler steel in Na2SO4-60%V2O5 environment at 900oC under cyclic conditions [J]. Corros. Sci., 2021, 190: 109666
|
70 |
Meier G H. Invited review paper in commemoration of over 50 years of oxidation of metals: Current aspects of deposit-induced corrosion [J]. Oxid. Met., 2021, doi: 10.1007/s11085-020-10015-6
|
71 |
Lortrakul P, Trice R W, Trumble K P, et al. Investigation of the mechanisms of Type-II hot corrosion of superalloy CMSX-4 [J]. Corros. Sci., 2014, 80: 408
|
72 |
Zhong Y S, Rapp R A. Solubilities of α-Fe2O3 and Fe3O4 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1985, 132: 2498
|
73 |
Gupta D K, Rapp R A. The solubilities of NiO, Co3O4, and ternary oxides in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1980, 127: 2194
|
74 |
Jose P D, Gupta D K, Rapp R A. Solubility of α-Al2O3 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1985, 132: 735
|
75 |
Zhang Y S. Solubilities of Cr2O3 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1986, 133: 655
|
76 |
Rapp R A. Hot corrosion of materials: A fluxing mechanism? [J]. Corros. Sci., 2002, 44: 209
|
77 |
Kolta G A, Hewaidy I F, Felix N S. Reactions between sodium sulphate and vanadium pentoxide [J]. Thermochim. Acta, 1972, 4: 151
|
78 |
Montero X, Galetz M C. Sulfate-vanadate-induced corrosion of different alloys [J]. Oxid. Met., 2018, 89: 499
|
79 |
Zhao Y Y, Chen D L, Chen J, et al. A mathematic model of the whole erosions in coal-fired boilers [J]. Boiler Manuf., 2002, (2): 6
|
|
赵渝渝, 陈冬林, 陈 荐等. 燃煤锅炉总体磨损性数学模型 [J]. 锅炉制造, 2002, (2): 6
|
80 |
Wright I G, Williams D N, Hazard H R, et al. Fireside corrosion and fly ash erosion in boilers: Final report [R]. Palo Alto, CA: Electric Power Research Institute, 1987
|
81 |
Jin T, Luo K, Fan J R, et al. Immersed boundary method for simulations of erosion on staggered tube bank by coal ash particles [J]. Powder Technol., 2012, 225: 196
|
82 |
Orumbayev R K, Bakhtiyar B T, Umyshev D R, et al. Experimental study of ash wear of heat exchange surfaces of the boiler [J]. Energy, 2021, 215: 119119
|
83 |
Singh P K, Mishra S B. Erosion behaviour of boiler component materials at room temperature and 400oC temperature [J]. Mater. Res. Express, 2020, 7: 016538
|
84 |
Sagayaraj T A D, Suresh S, Chandrasekar M. Experimental studies on the erosion rate of different heat treated carbon steel economiser tubes of power boilers by fly ash particles [J]. Int. J. Min. Metall. Mater., 2009, 16: 534
|
85 |
Yun J Y, Lee H S, Hur D H, et al. Effect of oxidation film on the fretting wear behavior of Alloy 690 steam generator tube mated with SUS 409 [J]. Wear, 2016, 368-369: 344
|
86 |
Xing X F, Wang R, Bauer N, et al. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China [J]. Nat. Commun., 2021, 12: 3159
|
87 |
Gruber T, Schulze K, Scharler R, et al. Investigation of the corrosion behaviour of 13CrMo4-5 for biomass fired boilers with coupled online corrosion and deposit probe measurements [J]. Fuel, 2015, 144: 15
|
88 |
Zhou J, Liu Q, Zhong W Q, et al. Migration and transformation law of potassium in the combustion of biomass blended coal [J]. J. Fuel Chem. Technol., 2020, 48: 929
|
|
周 骏, 刘 倩, 钟文琪等. 生物质混煤燃烧过程中钾的迁移转化规律 [J]. 燃料化学学报, 2020, 48: 929
|
89 |
Chen J, Fu P F, Zhang B, et al. Deposition and sintering behavior of alkali metals and chlorine in biomass combustion [J]. J. Eng. Thermophys., 2014, 35: 1453
|
|
陈 兢, 傅培舫, 张 斌等. 生物质燃烧中碱金属和氯沉积烧结行为分析 [J]. 工程热物理学报, 2014, 35: 1453
|
90 |
Lehmusto J, Yrjas P, Skrifvars B J, et al. Detailed studies on the high temperature corrosion reactions between potassium chloride and metallic chromium [J]. Mater. Sci. Forum, 2011, 696: 218
|
91 |
Uusitalo M A, Vuoristo P M J, Mäntylä T A. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits [J]. Corros. Sci., 2004, 46: 1311
|
92 |
Sadeghimeresht E, Reddy L, Hussain T, et al. Influence of KCl and HCl on high temperature corrosion of HVAF-sprayed NiCrAlY and NiCrMo coatings [J]. Mater. Des., 2018, 148: 17
|
93 |
Wang Y B, Tan H Z. Condensation of KCl(g) under varied temperature gradient [J]. Fuel, 2019, 237: 1141
|
94 |
Lyu Z K, Long S W, Li G B, et al. Density functional theory study on chlorine corrosion of biomass furnace [J]. CIESC J., 2019, 70: 4370
|
|
吕泽康, 龙慎伟, 李冠兵等. 生物质锅炉氯腐蚀的密度泛函理论研究 [J]. 化工学报, 2019, 70: 4370
|
95 |
Gao J K, Tong Y, Wang S C, et al. The current situation and future development tendency of biomass-coal coupling power generation system [J]. Renew. Energy Resour., 2019, 37: 501
|
|
高金锴, 佟 瑶, 王树才等. 生物质燃煤耦合发电技术应用现状及未来趋势 [J]. 可再生能源, 2019, 37: 501
|
96 |
Jin Q M, Dai G F, Wang Y B, et al. High-temperature corrosion of water-wall tubes in oxy-combustion atmosphere [J]. J. Energy Inst., 2020, 93: 1305
|
97 |
Zhang Q, Wang J Q, Chen G H, et al. Microstructures and mechanical properties of T92/Super304H dissimilar steel weld joints [J]. Chin. J. Nonferrous Met., 2013, 23: 396
|
|
张 祺, 王家庆, 陈国宏等. T92/Super304H异种钢焊接接头的组织结构和力学性能 [J]. 中国有色金属学报, 2013, 23: 396
|
98 |
Zhao Q X, Zhang Z X, Cheng D N, et al. High temperature corrosion of water wall materials T23 and T24 in simulated furnace atmospheres [J]. Chin. J. Chem. Eng., 2012, 20: 814
|
99 |
Wright I G, Dooley R B. Morphologies of oxide growth and exfoliation in superheater and reheater tubing of steam boiler [J]. Mater. High Temp., 2011, 28: 40
|
100 |
Hussain T, Syed A U, Simms N J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass [J]. Fuel, 2013, 113: 787
|
101 |
Goyal G, Singh H, Prakash S. Effect of superficially applied ZrO2 inhibitor on the high temperature corrosion performance of some Fe-, Co- and Ni-base superalloys [J]. Appl. Surf. Sci., 2008, 254: 6653
|
102 |
Muthu S M, Arivarasu M. Investigations of hot corrosion resistance of HVOF coated Fe based superalloy A-286 in simulated gas turbine environment [J]. Eng. Fail. Anal., 2020, 107: 104224
|
103 |
Mudgal D, Singh S, Prakash S. Hot corrosion behavior of some superalloys in a simulated incinerator environment at 900oC [J]. J. Mater. Eng. Perform., 2014, 23: 238
|
104 |
Birol Y. High temperature sliding wear behaviour of Inconel 617 and Stellite 6 alloys [J]. Wear, 2010, 269: 664
|
105 |
Guo J T. The current situation of application and development of superalloys in the fields of energy industry [J]. Acta Metall. Sin., 2010, 46: 513
|
|
郭建亭. 高温合金在能源工业领域中的应用现状与发展 [J]. 金属学报, 2010, 46: 513
|
106 |
Israelsson N, Unocic K A, Hellström K, et al. A microstructural and kinetic investigation of the KCl-induced corrosion of an FeCrAl alloy at 600oC [J]. Oxid. Met., 2015, 84: 105
|
107 |
Okoro S C, Montgomery M, Frandsen F J, et al. Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firing [J]. Surf. Coat. Technol., 2017, 319: 76
|
108 |
Klein L, Killian M S, Virtanen S. The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys [J]. Corros. Sci., 2013, 69: 43
|
109 |
Weng F, Yu H J, Wan K, et al. The influence of Nb on hot corrosion behavior of Ni-based superalloy at 800oC in a mixture of Na2SO4-NaCl [J]. J. Mater. Res., 2014, 29: 2596
|
110 |
Schütze M, Malessa M, Rohr V, et al. Development of coatings for protection in specific high temperature environments [J]. Surf. Coat. Technol., 2006, 201: 3872
|
111 |
Trindade V, Christ H J, Krupp U. Grain-size effects on the high-temperature oxidation behaviour of chromium steels [J]. Oxid. Met., 2010, 73: 551
|
112 |
Sadeghimeresht E, Markocsan N, Huhtakangas M, et al. Isothermal oxidation of HVAF-sprayed Ni-based chromia, alumina and mixed-oxide scale forming coatings in ambient air [J]. Surf. Coat. Technol., 2017, 316: 10
|
113 |
Davis J R. Handbook of Thermal Spray Technology [M]. Materials Park, OH: ASM International, 2004: 54
|
114 |
Wang G Y, Liu H, Chen T Z, et al. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment [J]. Corros. Sci., 2021, 189: 109592
|
115 |
Hussain T, Simms N J, Nicholls J R, et al. Fireside corrosion degradation of HVOF thermal sprayed FeCrAl coating at 700-800oC [J]. Surf. Coat. Technol., 2015, 268: 165
|
116 |
Jiang C P, Liu W Q, Wang G, et al. The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings [J]. Surf. Eng., 2018, 34: 634
|
117 |
Chawla V, Sidhu B S, Rani A, et al. High-temperature corrosion behavior of some post-plasma-spraying-gas-nitrided metallic coatings on a Fe-based superalloy [J]. Mater. Corros., 2019, 70: 2157
|
118 |
Sidhu T S, Prakash S, Agrawal R D. Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4-60%V2O5 environment at 900oC [J]. Acta Mater., 2006, 54: 773
|
119 |
Mittal R, Singh M, Kumar P. Characterization of detonation gun thermal spray coatings on SA213T91 in simulated boiler environment [J]. Mater. Today Proc., 2019, 18: 4952
|
120 |
Singh H, Puri D, Prakash S. Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy [J]. Surf. Coat. Technol., 2005, 192: 27
|
121 |
Bala N, Singh H, Prakash S. Accelerated hot corrosion studies of cold spray Ni-50Cr coating on boiler steels [J]. Mater. Des., 2010, 31: 244
|
122 |
Cheng J, Wu Y P, Chen L Y, et al. Hot corrosion behavior and mechanism of high-velocity arc-sprayed Ni-Cr alloy coatings [J]. J. Therm. Spray Technol., 2019, 28: 1263
|
123 |
Sadeghimeresht E, Reddy L, Hussain T, et al. Chlorine-induced high temperature corrosion of HVAF-sprayed Ni-based alumina and chromia forming coatings [J]. Corros. Sci., 2018, 132: 170
|
124 |
Goutier F, Valette S, Vardelle A, et al. Behaviour of alumina-coated 304L steel in a waste-to-energy plant [J]. Surf. Coat. Technol., 2011, 205: 4425
|
125 |
Singh G, Goyal K, Bhatia R. Hot corrosion studies of plasma-sprayed chromium oxide coatings on boiler tube steel at 850oC in simulated boiler environment [J]. Iran. J. Sci. Technol. Trans. Mech. Eng., 2018, 42: 149
|
126 |
Mittal R, Singh H. Evaluation of the behavior of D-gun sprayed coatings on T-11 boiler steel at 900oC temperature [J]. Mater. Today Proc., 2020, 26: 549
|
127 |
Rao S, Frederick L, McDonald A. Resistance of nanostructured environmental barrier coatings to the movement of molten salts [J]. J. Therm. Spray Technol., 2012, 21: 887
|
128 |
Rani A, Bala N, Gupta C M. Accelerated hot corrosion studies of D-gun-sprayed Cr2O3-50% Al2O3 coating on boiler steel and Fe-based superalloy [J]. Oxid. Met., 2017, 88: 621
|
129 |
Katiki K, Yadlapati S, Chidepudi N S, et al. Performance of plasma spray coatings on Inconel 625 in air oxidation and molten salt environment at 800oC [J]. Int. J. Chem. Tech. Res., 2014, 6: 2744
|
130 |
Goyal R, Sidhu B S, Chawla V. Hot corrosion performance of plasma-sprayed multiwalled carbon nanotube-Al2O3 composite coatings in a coal-fired boiler at 900oC [J]. J. Mater. Eng. Perform., 2020, 29: 5738
|
131 |
Kumar S, Bhatia R, Singh H. Hot corrosion behaviour of CNT-reinforced zirconium yttrium composite coating at elevated temperature [J]. Mater. Today Proc., 2020, 28: 1530
|
132 |
Mudgal D, Kumar S, Singh S, et al. Corrosion behavior of bare, Cr3C2-25%(NiCr), and Cr3C2-25%(NiCr) + 0.4%CeO2-coated Superni 600 under molten salt at 900oC [J]. J. Mater. Eng. Perform., 2014, 23: 3805
|
133 |
Ahuja L, Mudgal D, Singh S, et al. A comparative study to evaluate the corrosion performance of Zr incorporated Cr3C2-(NiCr) coating at 900oC [J]. Ceram. Int., 2018, 44: 6479
|
134 |
Singh H, Kaur M, Prakash S. High-temperature exposure studies of HVOF-sprayed Cr3C2-25(NiCr)/(WC-Co) coating [J]. J. Therm. Spray Technol., 2016, 25: 1192
|
135 |
Singh H, Bala N, Kaur N, et al. Effect of additions of TiC and Re on high temperature corrosion performance of cold sprayed Ni-20Cr coatings [J]. Surf. Coat. Technol., 2015, 280: 50
|
136 |
Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
|
137 |
Chatha S S, Sidhu H S, Sidhu B S. The effects of post-treatment on the hot corrosion behavior of the HVOF-sprayed Cr3C2-NiCr coating [J]. Surf. Coat. Technol., 2012, 206: 4212
|
138 |
Wu Y S. Hot corrosion behavior of nanocrystalline NiCrBSi-TiB2 coating in Na2SO4-60%V2O5 molten salt [J]. Hot Work. Technol., 2015, 44(18): 123
|
|
吴姚莎. 纳米NiCrBSi-TiB2涂层在Na2SO4-60%V2O5熔盐中的热腐蚀行为 [J]. 热加工工艺, 2015, 44(18): 123
|
139 |
Sundaresan C, Rajasekaran B, Varalakshmi S, et al. Comparative hot corrosion performance of APS and detonation sprayed CoCrAlY, NiCoCrAlY and NiCr coatings on T91 boiler steel [J]. Corros. Sci., 2021, 189: 109556
|
140 |
Hu K, Liu X, Zhang S H, et al. Effect of oxygen-fuel ratio on microstructure and hot corrosion behavior of NiCrAlY coatings in KCl molten salt [J]. Chin. J. Nonferrous Met., 2021, 31: 1545
|
|
胡 凯, 刘 侠, 张世宏等. 氧燃比对NiCrAlY涂层的微观结构及其在KCl熔盐中热腐蚀行为的影响 [J]. 中国有色金属学报, 2021, 31: 1545
|
141 |
Zhang S T, Du K P, Ren X J, et al. Effect of Si on hot corrosion resistance of CoCrAlY coating [J]. Rare Met. Mater. Eng., 2017, 46: 2807
|
142 |
Horlock A J, McCartney D G, Shipway P H, et al. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: Microstructure and abrasive wear behaviour [J]. Mater. Sci. Eng., 2002, A336: 88
|
143 |
Cai J, Gao C Z, Lv P, et al. Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam [J]. J. Alloys Compd., 2019, 784: 1221
|
144 |
Zhu S Y, Cheng J, Qiao Z H, et al. High temperature solid-lubricating materials: A review [J]. Tribol. Int., 2019, 133: 206
|
145 |
Meng Y G, Xu J, Jin Z M, et al. A review of recent advances in tribology [J]. Friction, 2020, 8: 221
|
146 |
Praveen A S, Sarangan J, Suresh S, et al. Erosion wear behaviour of plasma sprayed NiCrSiB/Al2O3 composite coating [J]. Int. J. Refract. Met. Hard Mater., 2015, 52: 209
|
147 |
Baiamonte L, Björklund S, Mulone A, et al. Carbide-laden coatings deposited using a hand-held high-velocity air-fuel (HVAF) spray gun [J]. Surf. Coat. Technol., 2021, 406: 126725
|
148 |
Mishra S B, Chandra K, Prakash S. Erosion-corrosion performance of NiCrAlY coating produced by plasma spray process in a coal-fired thermal power plant [J]. Surf. Coat. Technol., 2013, 216: 23
|
149 |
Kumar P, Sidhu B S. Characterization and high-temperature erosion behaviour of HVOF thermal spray cermet coatings [J]. J. Mater. Eng. Perform., 2016, 25: 250
|
150 |
Singh P K, Mishra S B. Studies on solid particle erosion behaviour of D-gun sprayed WC-Co, Stellite 6 and Stellite 21 coatings on SAE213-T12 boiler steel at 400oC temperature [J]. Surf. Coat. Technol., 2020, 385: 125353
|
151 |
Bala N, Singh H, Prakash S. Performance of cold sprayed Ni based coatings in actual boiler environment [J]. Surf. Coat. Technol., 2017, 318: 50
|
152 |
Kumar S, Kumar M, Handa A. Erosion corrosion behaviour and mechanical properties of wire arc sprayed Ni-Cr and Ni-Al coating on boiler steels in a real boiler environment [J]. Mater. High Temp., 2020, 37: 370
|
153 |
Sapra P K, Singh P K, Prakash S, et al. Performance of Al2O3-3%TiO2 detonation gun coated ferritic steels in coal fired boiler [J]. Int. J. Surf. Sci. Eng., 2009, 3: 145
|
154 |
Sidhu H S, Sidhu B S, Prakash S. Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr coatings on the boiler tube steels using LPG as the fuel gas [J]. J. Mater. Process. Technol., 2006, 171: 77
|
155 |
Wu Y S, Zeng D C, Liu Z W, et al. Microstructure and sliding wear behavior of nanostructured Ni60-TiB2 composite coating sprayed by HVOF technique [J]. Surf. Coat. Technol., 2011, 206: 1102
|
156 |
Mahesh R A, Jayaganthan R, Prakash S. Evaluation of hot corrosion behaviour of HVOF sprayed Ni-5Al and NiCrAl coatings in coal fired boiler environment [J]. Surf. Eng., 2010, 26: 413
|
157 |
Wang T L, Jia Y H, Wang C Y, et al. Influence of nano ceramic coating on coking characteristics of heating surface of Zhundong coal fired boiler and its engineering application [J/OL]. Therm. Power Generat., 2021. (2021-09-13).
|
|
王天龙, 贾永会, 汪潮洋等. 纳米陶瓷涂层对燃用准东煤锅炉受热面结焦特性影响研究及工程应用 [J/OL]. 热力发电, 2021. (2021-09-13).
|
158 |
Kawahara Y. An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades [J]. Coatings, 2016, 6: 34
|
159 |
Oksa M, Metsäjoki J, Kärki J. Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilers [J]. J. Therm. Spray Technol., 2015, 24: 194
|
160 |
Hjörnhede A, Sotkovszki P, Nylund A. Erosion-corrosion of laser and thermally deposited coatings exposed in fluidised bed combustion plants [J]. Mater. Corros., 2006, 57: 307
|
161 |
Chi H T, Pans M A, Bai M W, et al. Experimental investigations on the chlorine-induced corrosion of HVOF thermal sprayed Stellite-6 and NiAl coatings with fluidised bed biomass/anthracite combustion systems [J]. Fuel, 2021, 288: 119607
|
162 |
Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
|
|
刘兴军, 陈悦超, 卢 勇等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
|
163 |
Liu Z, Li Y F, Shi D W, et al. The development of cladding materials for the accident tolerant fuel system from the Materials Genome Initiative [J]. Scr. Mater., 2017, 141: 99
|
164 |
Xie Y S, Artymowicz D M, Lopes P P, et al. A percolation theory for designing corrosion-resistant alloys [J]. Nat. Mater., 2021, 20: 789
|
165 |
Shamsipoor A, Farvizi M, Razavi M, et al. Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950oC in presence of Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2021, 47: 2347
|
166 |
Wang Z Y, Ma G S, Liu L L, et al. High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100oC temperature range [J]. Corros. Sci., 2020, 167: 108492
|
167 |
Richardson P, Cuskelly D, Brandt M, et al. Microstructural analysis of in-situ reacted Ti2AlC MAX phase composite coating by laser cladding [J]. Surf. Coat. Technol., 2020, 385: 125360
|
168 |
Li L, Lu J, Liu X Z, et al. AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25%NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
|
169 |
Shang C Y, Axinte E, Sun J, et al. CoCrFeNi(W1 - xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
|
170 |
Xiao J K, Wu Y Q, Chen J, et al. Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings [J]. Wear, 2020, 448-449: 203209
|
171 |
Vu A T, Gulati S, Vogel P A, et al. Machine learning-based predictive modeling of contact heat transfer [J]. Int. J. Heat Mass Transfer, 2021, 174: 121300
|
172 |
Zhan T Z, Fang L, Xu Y B. Prediction of thermal boundary resistance by the machine learning method [J]. Sci. Rep., 2017, 7: 7109
|
173 |
Yury K, Filiрpov M, Makarov A, et al. Arc-sprayed Fe-based coatings from cored wires for wear and corrosion protection in power engineering [J]. Coatings, 2018, 8: 71
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|