Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (8): 1039-1047    DOI: 10.11900/0412.1961.2020.00315
Research paper Current Issue | Archive | Adv Search |
Interfacial Fatigue Spalling Behavior of TiN Films on High Speed Steel
QIU Longshi1,2, ZHAO Jing1, PAN Xiaolong1(), TIAN Feng1
1.Xi'an Rare Metal Materials Institute Co. , Ltd. , Xi'an 710016, China
2.State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

QIU Longshi, ZHAO Jing, PAN Xiaolong, TIAN Feng. Interfacial Fatigue Spalling Behavior of TiN Films on High Speed Steel. Acta Metall Sin, 2021, 57(8): 1039-1047.

Download:  HTML  PDF(10898KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Performance and fatigue life of coating parts are seriously restricted by their interfacial fatigue property. Herein, TiN films were deposited on W6Mo5Cr4V2 steel substrates by multiarc ion plating. The interfacial fatigue failure mechanisms were studied by the rolling contact fatigue method. The results show that the interfacial fatigue failure mode is mainly film spalling. The fatigue cracks generated initially at the film/substrate interface proceed to the surface, resulting in film spalling. The interfacial maximum shear stress amplitude (Δτinter) is a key factor for controlling interfacial crack initiation and propagation. The evolution model built using Δτinter and critical cycles (N) can be used to determine interfacial fatigue performance and for life forecast. The interfacial fatigue property is determined using a film/substrate interface, and glow discharge cleaning and prefabricated metal layer before coating deposition can improve interface fatigue performance. The evaluation model based on Δτinter-N curves can effectively used to identify the differences in interface states. Selection of the film-spalling area ratios of 5% and 50% and failure probabilities of 30%, 60%, and 90% have little effect on the determination of film/substrate interfacial fatigue performance. The results provide important theoretical references for fatigue performance determination and lifespan prediction of coated bearings and other parts.

Key words:  vapor deposition      hard film      rolling contact      interfacial fatigue      spalling     
Received:  19 August 2020     
ZTFLH:  TG172.44  
Fund: Natural Science Basic Research Program of Shaanxi Province(2020JQ-924);Xi'an Postdoctoral Innovation Base Research Project
About author:  PAN Xiaolong, senior engineer, Tel: (029)86258754, E-mail: 919516928@qq.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00315     OR     https://www.ams.org.cn/EN/Y2021/V57/I8/1039

Filmt / μmInterfacial stateLc / NPc / NHv / GPa
TiN1.6GD-20 min + Ti*-10 min> 100> 100024.5 ± 0.5
TiN3.7GD-5 min + Ti*-0 min3040024.0 ± 0.7
TiN3.7GD-10 min + Ti*-5 min90100023.8 ± 0.8
TiN3.7GD-20 min + Ti*-10 min> 100> 100024.7 ± 0.4
Table 1  Preparation parameters and mechanical properties of TiN films
Fig.1  The structure diagrams of rolling contact fatigue tester (r—radius, F—load)
Fig.2  Surface (a) and cross section (b) SEM images of TiN films (t = 1.6 μm)
Fig.3  SEM images and EDS analysis of the rolling contact fatigue (RCF) failure of TiN films (t = 1.6 μm)
Fig.4  The morphology and section profile of rolling contact failure zone of TiN films
Fig.5  Interfacial crack propagation of TiN films
Fig.6  The mechanism diagram of interfacial fatigue spalling
Fig.7  The stress distribution under the rolling contact conditions (S12—shear stress; SMax. Principal—maximum principal stress)(a) shear stress(b) maximum principal stress
Fig.8  Effects of failure area ratio on S-N curves (S-5%—spalling area ratio 5%, S-50%—spalling area ratio 50%, N—fatigue spalling cycles)

F

N

Δτinter

GPa

L30

106 cyc

L60

106 cyc

L90

106 cyc

200.9680.3150.5580.825
251.0300.2350.4160.636
301.1250.1980.3200.475
351.2080.1750.2870.398
Table 2  The fatigue life parameters of TiN films under different external loads
PCm
30% (L30)0.274.72
60% (L60)0.484.68
90% (L90)0.724.16
Table 3  The S-N curve parameters with different failure probabilities
Fig.9  The S-N curves of TiN films with different failure probabilities
Fig.10  Effects of interfacial states on interfacial fatigue properties (t = 3.7 μm)
1 Stewart S, Ahmed R. Rolling contact fatigue of surface coatings—A review [J]. Wear, 2002, 253: 1132
2 Piao Z Y, Xu B S, Wang H D, et al. Investigation of fatigue failure prediction of Fe-Cr alloy coatings under rolling contact based on acoustic emission technique [J]. Appl. Surf. Sci., 2011, 257: 2581
3 Colombo D A, Echeverría M D, Laino S, et al. Rolling contact fatigue resistance of PVD CrN and TiN coated austempered ductile iron [J]. Wear, 2013, 308: 35
4 Mayrhofer P H, Mitterer C, Hultman L, et al. Microstructural design of hard coatings [J]. Prog. Mater. Sci., 2006, 51: 1032
5 Musil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness [J]. Surf. Coat. Technol., 2012, 207: 50
6 Santecchia E, Hamouda A M S, Musharavati F, et al. Wear resistance investigation of titanium nitride-based coatings [J]. Ceram. Int., 2015, 41: 10349
7 Kuhn M, Gold P W, Loos J. Wear and friction characteristics of PVD-coated roller bearings [J]. Surf. Coat. Technol., 2004, 177-178: 469
8 Mutyala K C, Singh H, Evans R D, et al. Effect of deposition method on the RCF performance of CrxN thin film ball coatings [J]. Surf. Coat. Technol., 2016, 305: 176
9 Liu H X, Jiang Y H, Zhou R, et al. Rolling contact fatigue life and mechanical property of TiN film fabricated by plasma immersion ion implantation and deposition [J]. Acta Metall. Sin., 2008, 44: 325
刘洪喜, 蒋业华, 周 荣等. 等离子体浸没离子注入与沉积合成TiN薄膜的滚动接触疲劳寿命和机械性能 [J]. 金属学报, 2008, 44: 325
10 Qiu L S, Qiao G L, Ma F, et al. Study on residual stress modulation and mechanical properties of titanium nitride coatings [J]. J. Mech. Eng., 2017, 53(24): 42
邱龙时, 乔关林, 马 飞等. TiN薄膜的残余应力调控及力学性能研究 [J]. 机械工程学报, 2017, 53(24): 42
11 Oettel H, Wiedemann R. Residual stresses in PVD hard coatings [J]. Surf. Coat. Technol., 1995, 76-77: 265
12 Colombo D A, Echeverría M D, Dommarco R C, et al. Influence of TiN coating thickness on the rolling contact fatigue resistance of austempered ductile iron [J]. Wear, 2016, 350-351: 82
13 Colombo D A, Massone J M, Echeverría M D, et al. Rolling contact fatigue behavior of Ti/TiN coated ADI by cathodic arc deposition [J]. Ceram. Int., 2017, 43: 4263
14 Vera E E, Vite M, Gallardo E A, et al. Fatigue life of TiN and CrN coatings in rolling contact [J]. Proc. Inst. Mech. Eng., 2013, 227J: 339
15 Polonsky I A, Keer L M. Numerical analysis of the effect of coating microstructure on three-dimensional crack propagation in the coating under rolling contact fatigue conditions [J]. J. Tribol., 2002, 124: 14
16 Polonsky I A, Chang T P, Keer L M, et al. An analysis of the effect of hard coatings on near-surface rolling contact fatigue initiation induced by surface roughness [J]. Wear, 1997, 208: 204
17 Xu B S, Wang H D, Piao Z Y, et al. Investigation of structural integrity and life time prediction of the thermal sprayed alloy coating for remanufacturing [J]. Acta Metall. Sin., 2011, 47: 1355
徐滨士, 王海斗, 朴钟宇等. 再制造的热喷涂合金涂层的结构完整性与服役寿命预测研究 [J]. 金属学报, 2011, 47: 1355
18 Qiu L S, Zhu X D, Lu S, et al. Evaluation of hard-coating/substrate interfacial adhesion in rolling contact fatigue method under elastic-plastic deformation [J]. Chin. J. Vacuum Sci. Technol., 2015, 35: 1380
邱龙时, 朱晓东, 鲁 莎等. 基于弹塑性滚动接触疲劳法评价硬质薄膜结合强度 [J]. 真空科学与技术学报, 2015, 35: 1380
19 Qiu L S, Ma S L, Xu K W. Dynamicfailure mechanism and evaluation method of TiN hard coatings deposited by multi-arc ion plating (MAIP) [J]. Mater. Prot., 2014, 47(suppl.2): 109
邱龙时, 马胜利, 徐可为. 多弧离子镀制备TiN镀层的动态失效机制及评价方式 [J]. 材料保护, 2014, 47(): 109
20 Qiu L S, Zhu X D, Lu S, et al. Quantitative evaluation of bonding strength for hard coatings by interfacial fatigue strength under cyclic indentation [J]. Surf. Coat. Technol., 2017, 315: 303
21 Thornton J A. High rate thick film growth [J]. Ann. Rev. Mater. Sci., 1977, 7: 239
22 Xie Z H, Hoffman M, Munroe P, et al. Microstructural response of TiN monolithic and multilayer coatings during microscratch testing [J]. J. Mater. Res., 2007, 22: 2312
23 Piao Z Y, Xu B S, Wang H D, et al. A separation of experimental study on coatings failure signal responses under rolling contact [J]. Tribol. Int., 2011, 44: 1304
24 Hogmark S, Hedenqvist P. Tribological characterization of thin, hard coatings [J]. Wear, 1994, 179: 147
25 Way S. Pitting due to rolling contact [J]. J. Appl. Mech., 1935, 2: A49
26 Qiu L, Zhu X, He G, et al. The repeated spherical indentation test: An efficient way to evaluate the adhesion of hard coatings [J]. Surf. Eng., 2016, 32: 578
27 Qiu L S, Zhu X D, Xu K W. Internal stress on adhesion of hard coatings synthesized by multi-arc ion plating [J]. Surf. Coat. Technol., 2017, 332: 267
28 Zhang X C, Xu B S, Wang H D, et al. Hertzian contact response of single-layer, functionally graded and sandwich coatings [J]. Mater. Des., 2007, 28: 47
29 Gerth J, Wiklund U. The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel [J]. Wear, 2008, 264: 885
[1] WU Yucheng, GAO Zhiqiang, XU Guangqing, LIU Jiaqin, XUAN Haicheng, LIU Youhao, YI Xiaofei, CHEN Jingwu, HAN Peide. Current Status and Challenges in Corrosion and Protection Strategies for Sintered NdFeB Magnets[J]. 金属学报, 2021, 57(2): 171-181.
[2] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[3] Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE[J]. 金属学报, 2016, 52(12): 1579-1585.
[4] LIU Hongji, SUN Junjie, JIANG Tao, GUO Shengwu, LIU Yongning, LIN Xin. ROLLING CONTACT FATIGUE BEHAVIOR OF AN ULTRAHIGH CARBON STEEL[J]. 金属学报, 2014, 50(12): 1446-1452.
[5] LI Xunping ZHOU Minbo XIA Jianmin MA Xiao ZHANG Xinping. EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS[J]. 金属学报, 2011, 47(5): 611-619.
[6] LIU Hongxi; WANG Langping; WANG Xiaofeng; HUANG Lei; TANG Baoyin. Effects of TiC Films on the Rolling Contact Fatigue Life and Mechanical Properties of Bearing Steel[J]. 金属学报, 2006, 42(11): 1197-1201 .
[7] CHEN Liqiang; GONG Shengkai; XU Huibin. INFLUENCE OF VERTICAL CRACKS ON FAILURE MECHANISM OF EB-PVD THERMAL BARRIER COATINGS DURING THERMAL CYCLING[J]. 金属学报, 2005, 41(9): 979-984 .
[8] SU Hang; JI Huaizhong; ZHANG Yongquan; YANG Caifu; LIU Tong. Simulation of Friction Heat Induced Phase Transformation in High Speed Train Wheel[J]. 金属学报, 2004, 40(9): 909-914 .
[9] HE Youduo;Y. SAHAI Baotou Institute of Iron and Steel Technology The Ohio State University; USA. THREE-DIMENSIONAL MATHEMATICAL MODELING OF TRANSPORT PROCESSES IN CVD REACTORS[J]. 金属学报, 1989, 25(2): 89-94.
[10] SUN Xudong;LI Jian Northeast University of Technology. SPALLING MECHANISM OF NITRIDED LAYER OF AUSTENITIC STEEL 4Cr14Ni14W2Mo[J]. 金属学报, 1989, 25(2): 71-73.
[11] LI Shizhi;XU Xiang Qingdao Institute of Chemical Technology; Qingdao; ShandongProfessor;Thin Solid Films Lab.;Qingdao Institute of Chemical Technology;53 Zhengzhou Road; Qingdao; Shandong. PLASMA CHEMICAL VAPOR DEPOSITED TiN FILMS[J]. 金属学报, 1988, 24(3): 229-235.
[12] LI Jian;Professor;Northeast University of Technotogy;Shenyang;SUN Xudong;LI Zaixian;LI Chunsheng Northeast University of Technology. SPALLING OF NITRIDED LAYER OF AUSTENITIC STEEL 4Cr14Ni14W2Mo[J]. 金属学报, 1988, 24(1): 47-50.
No Suggested Reading articles found!