Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy
GAO Yihan, LIU Gang(), SUN Jun()
State Key Laboratory for Mechanical Behavior of Materials, Xi??an Jiaotong University, Xi􀆳 ;an 710049, China
Cite this article:
GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy. Acta Metall Sin, 2021, 57(2): 129-149.
Many load-bearing industrial settings require light-weight structural materials with adequate strength. Although commercial aluminum (Al) alloys are suitable for room-temperature applications, their strength at elevated temperatures (300-500oC) is largely reduced by coarsening of the strengthening precipitates. However, high-temperature alternatives such as titanium alloys are much heavier and more expensive than Al alloys. Creating microstructures that remain stable over 300oC is an important goal of the aluminum-manufacturing community. This article focuses on the recent development of high-temperature resistant Al-based alloys. Especially, it discusses the unique microstructural features, selection criteria of the strengthening phase, alloying effects, and microstructural stabilization of aluminum. The strategies summarized in this review are expected to realize the new microstructural architectures of light-weight alloys, which are currently limited to low-temperature service.
Fig.1 Representative microstructural features of Al-based metal matrix composites (MMCs), including three-dimensional mapping with reinforcement fibers in yellow together with pores in black (a)[20] and cross section of the x-y plane with pores density highlighted by gradient color (b)[20], and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images showing heterogeneous precipitation (c)[26] and misfit dislocations (d)[26] at the TiB2/α-Al interfaces
Fig.2 Representative nanocrystalline structure (a) and second-phase particles (b) in Al-TM-based alloys[36]
Fig.3 Representative nanoprecipitates in 2xxx (a), 6xxx (b), and 7xxx (c) series ageing-hardenable Al-based alloys[46]
Fig.4 Representative equilibrium binary phase diagram of Al-Cu (a)[62] and Al-Sc (b)[64] systems, and diffusivities of conventional alloying elements in Al matrix at 300 and 400oC (c)[12,65,66]
Fig.5 Solute segregation at θ'-Al2Cu/matrix interfaces (a)[83], grain boundaries (b)[84] and the dislocation core (c)[85] in Al-based and Ni-based alloys (b—Burgers vector)
Fig.6 Nanostructural hierarchy in a rapid solidification (RS) A356 alloy, containing Si nanoprecipitates highly dispersed in α-Al matrix (a, b) as well as nanoscale Al particles embedded in eutectic Si (c)[124]
Fig.7 Eutectic phases (a, c) and high-temperature mechanical properties (b, d) in Al-Ni-bsed (a, b)[42] and Al-Ce-based (c, d)[45] alloys
Fig.8 Representative atom probe tomography (APT) images showing the Al3(Sc,Zr,Er)-based nanoprecipitates with core-shell structure (a~d)[136], and creep resistance of several Al-Sc-Zr-Er-based alloys at 300oC (e)[139] and 400oC (f)[139] (σ—threshold stress)
Fig.9 Representative TEM (a)[152] and APT (b)[153] images showing the morphology and chemical composition of Ω phase in Al-Cu-Mg-Ag-based alloys, and curves indicating this system has great high-temperature resistance within short period while suffers from rapid softening at high temperature (c)[155] and long duration (t—time) (d)[154]
Fig.10 Segregation energies of solutes at each platelet (a)[169] and triple Mn/Zr/Si segregation at the coherent and semi-coherent interfaces between α-Al matrix and θ'-Al2Cu (b~e)[167]
Fig.11 Strong Sc segregation at θ'-Al2Cu/matrix interface (a~d)[82,91] and Si-mediated reassembly of interfacially segregated Sc atoms (e~h)[171] in the Al-Cu-Sc RR (retrogression and re-ageing) alloy
Fig.12 Targeted atomic locations (a~d) and segregation-sandwiched Sc-Fe-Si segregation (e~m) at θ'-Al2Cu/matrix interface, obtained from high-throughput density functional theory (DFT) calculations and experiments, respectively; and curves showing the ultra-stabilized θ'-Al2Cu precipitates (n) and unprecedent creep resistance (o) at 300oC in the studied Al-Cu-Sc-Fe-Si alloy (ΔρSC,Fe and ΔρFe are the changes in bonding charge density; is average half length of θ'-Al2Cu precipitates; is the steady-state creep rates of the studied alloys, σ—tensile creep stress)[172]
Fig.13 Evolution of Ag distribution in G.P. zone, β'' and β' precipitates in an Ag-microalloyed Al-Mg-Si alloy during ageing process (a~d)[57]
1
Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferracs Met., 2011, 21: 2361
Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry (1) [J]. Light Alloy Fabrication Technol., 2013, 41(8): 1
Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
4
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
5
Wang G Q, Zhao Y H, Tang Y Y. Research progress of bobbin tool friction stir welding of aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 13
6
Polmear I J, Couper M J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures [J]. Metall. Trans., 1988, 19A: 1027
7
Polmear I J, Pons G, Barbaux Y, et al. After Concorde: Evaluation of creep resistant Al-Cu-Mg-Ag alloys [J]. Mater. Sci. Technol., 1999, 15: 861
8
Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Mater. China, 2013, 32: 39
张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32: 39
9
Polmear I, StJohn D, Nie J F, et al. Light Alloys: Metallurgy of the Light Metals [M]. 5th Ed., Boston: Butterworth-Heinemann, 2017: 1
10
Gao Y H, Liu G, Sun J. Tailoring the strengthening particles in aluminum alloys by microalloying [J]. Mater. China, 2019, 38: 231
Weakley-Bollin S C, Donlon W, Wolverton C, et al. Modeling the age-hardening behavior of Al-Si-Cu alloys [J]. Metall. Mater. Trans., 2004, 35A: 2407
12
Knipling K E, Dunand D C, Seidman D N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review [J]. Z. Metallkd., 2006, 97: 246
13
Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: A review [J]. Rare Met., 2020, 39: 636
14
Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Prog. Mater. Sci., 2004, 49: 389
15
Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys [J]. Int. Mater. Rev., 2005, 50: 193
16
Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
17
Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
18
Yang T, Zhao Y L, Li W P, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces [J]. Science, 2020, 369: 427
19
Rofman O V, Mikhaylovskaya A V, Kotov A D, et al. AA2024/SiC metal matrix composites simultaneously improve ductility and cracking resistance during elevated temperature deformation [J]. Mater. Sci. Eng., 2020, A790: 139697
20
Kurumlu D, Payton E J, Young M L, et al. High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography [J]. Acta Mater., 2012, 60: 67
21
Karnesky R A, Meng L, Dunand D C. Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids [J]. Acta Mater., 2007, 55: 1299
22
Geng R, Zhao Q L, Qiu F, et al. Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite [J]. Mater. Res. Lett., 2020, 8: 225
23
Tian W S, Zhao Q L, Geng R, et al. Improved creep resistance of Al-Cu alloy matrix composite reinforced with bimodal-sized TiCp [J]. Mater. Sci. Eng., 2018, A713: 190
24
Tian W S, Zhao Q L, Zhang Q Q, et al. Enhanced strength and ductility at room and elevated temperatures of Al-Cu alloy matrix composites reinforced with bimodal-sized TiCp compared with monomodal-sized TiCp [J]. Mater. Sci. Eng., 2018, A724: 368
25
Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
26
Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite [J]. Acta Mater., 2020, 185: 287
27
Ma Z Y, Tjong S C, Wang Z G. Cyclic and static creep behavior of Al-Cu alloy composite reinforced with in-situ Al2O3 and TiB2 particulates [J]. Mater. Sci. Eng., 1999, A264: 177
28
Spigarelli S, Cabibbo M, Evangelista E, et al. Creep properties of an Al-2024 composite reinforced with SiC particulates [J]. Mater. Sci. Eng., 2002, A328: 39
29
Satyaprasad K, Mahajan Y R, Bhanuprasad V V. Strengthening of Al/20 v/o TiC composites by isothermal heat treatment [J]. Scr. Metall. Mater., 1992, 26: 711
30
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
31
Vogelsang M, Arsenault R J, Fisher R M. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites [J]. Metall. Trans., 1986, 17A: 379
32
Christman T, Suresh S. Microstructural development in an aluminum alloy—SiC whisker composite [J]. Acta Metall., 1988, 36: 1691
33
Starink M J, Wang P, Sinclair I, et al. Microstrucure and strengthening of Al-Li-Cu-Mg alloys and MMCs: I. Analysis and modelling of microstructural changes [J]. Acta Mater., 1999, 47: 3841
34
Krainikov A V, Neikov O D. Rapidly solidified high-temperature aluminum alloys. I. Structure [J]. Powder Metall. Met. Ceram., 2012, 51: 399
35
Skinner D J, Bye R L, Raybould D, et al. Dispersion strengthened Al-Fe-V-Si alloys [J]. Scr. Metall., 1986, 20: 867
36
Davies R K, Randle V, Marshall G J. Continuous recrystallization—Related phenomena in a commercial Al-Fe-Si alloy [J]. Acta Mater., 1998, 46: 6021
37
Peng L M, Zhu S J, Ma Z Y, et al. High temperature creep deformation of an Al-Fe-V-Si Alloy [J]. Mater. Sci. Eng., 1999, A259: 25
38
Inoue A, Kimura H M, Zhang T. High-strength aluminum- and zirconium-based alloys containing nanoquasicrystalline particles [J]. Mater. Sci. Eng., 2000, A294-296: 727
39
Kawamura Y, Mano H, Inoue A. Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders [J]. Scr. Mater., 2001, 44: 1599
40
Galano M, Audebert F, Escorial A G, et al. Nanoquasicrystalline Al-Fe-Cr-based alloys. Part II. Mechanical properties [J]. Acta Mater., 2009, 57: 5120
41
Suwanpreecha C, Toinin J P, Michi R A, et al. Strengthening mechanisms in Al-Ni-Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates [J]. Acta Mater., 2018, 164: 334
42
Pandey P, Makineni S K, Gault B, et al. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition [J]. Acta Mater., 2019, 170: 205
43
Plotkowski A, Rios O, Sridharan N, et al. Evaluation of an Al-Ce alloy for laser additive manufacturing [J]. Acta Mater., 2017, 126: 507
44
Sims Z C, Rios O R, Weiss D, et al. High performance aluminum-cerium alloys for high-temperature applications [J]. Mater. Horiz., 2017, 4: 1070
45
Liu Y, Michi R A, Dunand D C. Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance [J]. Mater. Sci. Eng., 2019, A767: 138440
46
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
47
Liu G, Zhang G J, Ding X D, et al. Dependence of fracture toughness on multiscale second phase particles in high strength Al alloys [J]. Mater. Sci. Technol., 2003, 19: 887
48
Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [J]. Acta Mater., 2002, 50: 4021
49
Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
50
Zhu A W, Starke Jr E A. Strengthening effect of unshearable particles of finite size: A computer experimental study [J]. Acta Mater., 1999, 47: 3263
51
Nie J F, Muddle B C. Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates [J]. Acta Mater., 2008, 56: 3490
52
Lumley R N, Polmear I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy [J]. Scr. Mater., 2004, 50: 1227
53
Gao L, Li K, Ni S, et al. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61: 25
54
Gao Y H, Cao L F, Kuang J, et al. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37: 38
55
Shen Z J, Ding Q Q, Liu C H, et al. Atomic-scale mechanism of the θ''→θ' phase transformation in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1159
56
Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
57
Weng Y Y, Ding L P, Zhang Z Z, et al. Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy [J]. Acta Mater., 2019, 180: 301
58
Hu Z Q, Zhang X J, Wu S S. Microstructure, mechanical properties and die-filling behavior of high-performance die-cast Al-Mg-Si-Mn alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 1344
59
Wang R H, Jiang S Y, Chen B A, et al. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2020, 57: 78
60
Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2010, 58: 4814
61
Li Z M, Jiang H C, Wang Y L, et al. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1172
62
Ringer S P, Hono K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies [J]. Mater. Charact., 2000, 44: 101
63
Røyset J, Ryum N. Scandium in aluminium alloys [J]. Int. Mater. Rev., 2005, 50: 19
64
Marquis E A, Seidman D N. Coarsening kinetics of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy [J]. Acta Mater., 2005, 53: 4259
65
Marumo T, Fujikawa S, Hirano K I. Diffusion of zirconium in aluminum [J]. J. Japan Inst. Light Met., 1973, 23: 17
66
Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation [J]. Mater. Sci. Eng., 2003, A363: 140
67
Ostwald W Z. Analytisch Chemie, Engleman [M]. Leipzig: Engelmann, 1901: 1
68
Ostwald W Z. Blocking of Ostwald ripening allowing long-term stabilization [J]. Phys. Chem., 1901, 37: 385
69
Lifshitz I M, Slezov V V. Kinetics of diffusive decomposition of supersaturated solid solutions [J]. Sov. Phys. JETP, 1959, 35: 331
70
Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald‐Reifung) [J]. Ber. Bunsen. Phys. Chem., 1961, 65: 581
71
Ardell A J. The effect of volume fraction on particle coarsening: Theoretical considerations [J]. Acta Metall., 1972, 20: 61
72
Kuehmann C J, Voorhees P W. Ostwald ripening in ternary alloys [J]. Metall. Mater. Trans., 1996, 27A: 937
73
Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys [J]. Acta Mater., 2013, 61: 4237
74
Ardell A J, Ozolins V. Trans-interface diffusion-controlled coarsening [J]. Nat. Mater., 2005, 4: 309
75
Calderon H A, Voorhees P W, Murray J L, et al. Ostwald ripening in concentrated alloys [J]. Acta Metall. Mater., 1994, 42: 991
76
Greenwood G W. The growth of dispersed precipitates in solutions [J]. Acta Metall., 1956, 4: 243
77
Boyd J D, Nicholson R B. The coarsening behaviour of θ″ and θ′precipitates in two Al-Cu alloys [J]. Acta Metall., 1971, 19: 1379
78
Orthacker A, Haberfehlner G, Taendl J, et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates [J]. Nat. Mater., 2018, 17: 1101
79
Liu G, Zhang G J, Ding X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates [J]. Mater. Sci. Eng., 2003, A344: 113
80
Radmilovic V, Ophus C, Marquis E A, et al. Highly monodisperse core-shell particles created by solid-state reactions [J]. Nat. Mater., 2011, 10: 710
81
Wettergren K, Schweinberger F F, Deiana D, et al. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening [J]. Nano Lett., 2014, 14: 5803
82
Gao Y H, Yang C, Zhang J Y, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300oC [J]. Mater. Res. Lett., 2019, 7: 18
83
Rosalie J M, Bourgeois L. Silver segregation to θ′ (Al2Cu)-Al interfaces in Al-Cu-Ag alloys [J]. Acta Mater., 2012, 60: 6033
84
Wu G, Liu C, Sun L G, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
85
Ding Q Q, Li S Z, Chen L Q, et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137
86
Booth-Morrison C, Mao Z, Diaz M, et al. Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al-Sc-Zr alloys [J]. Acta Mater., 2012, 60: 4740
87
Vo N Q, Dunand D C, Seidman D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er [J]. Acta Mater., 2014, 63: 73
88
Vo N Q, Dunand D C, Seidman D N. Role of silicon in the precipitation kinetics of dilute Al-Sc-Er-Zr alloys [J]. Mater. Sci. Eng., 2016, A677: 485
89
Gao Y H, Cao L F, Kuang J, et al. Assembling dual precipitates to improve high-temperature resistance of multi-microalloyed Al-Cu alloys [J]. J. Alloys Compd., 2020, 822: 153629
90
Michi R A, Perrin Toinin J, Farkoosh A R, et al. Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al-Zr-Er-Si alloy [J]. Acta Mater., 2019, 181: 249
91
Gao Y H, Cao L F, Yang C, et al. Co-stabilization of θ'-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al-Cu alloy with enhanced creep resistance [J]. Mater. Today Nano, 2019, 6: 100035
92
Fuller C B, Murray J L, Seidman D N. Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: Part I—Chemical compositions of Al3(Sc1-xZrx) precipitates [J]. Acta Mater., 2005, 53: 5401
93
van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys [J]. Acta Mater., 2005, 53: 4225
94
van Dalen M E, Seidman D N, Dunand D C. Creep- and coarsening properties of Al-0.06 at.% Sc-0.06 at.% Ti at 300-450oC [J]. Acta Mater., 2008, 56: 4369
95
Knipling K E, Dunand D C. Creep resistance of cast and aged Al-0.1Zr and Al-0.1Zr-0.1Ti (at.%) alloys at 300-400oC [J]. Scr. Mater., 2008, 59: 387
96
Esquivel J, Gupta R K. Corrosion behavior and hardness of Al-M (M: Mo, Si, Ti, Cr) alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 333
97
Vander Voort G, Asensio-Lozano J. The Al-Si phase diagram [J]. Microsc. Microanal., 2009, 15: 60
98
Liu D, Atkinson H V, Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al-Si-Cu and Al-Si-Cu-Mg systems [J]. Acta Mater., 2005, 53: 3807
99
Biswas A, Siegel D J, Seidman D N. Simultaneous segregation at coherent and semicoherent heterophase interfaces [J]. Phys. Rev. Lett., 2010, 105: 076102
100
Hernandez-Sandoval J, Garza-Elizondo G H, Samuel A M, et al. The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions [J]. Mater. Des., 2014, 58: 89
101
Mørtsell E A, Qian F, Marioara C D, et al. Precipitation in an A356 foundry alloy with Cu additions—A transmission electron microscopy study [J]. J. Alloys Compd., 2019, 785: 1106
102
Baruch L J, Raju R, Balasubramanian V, et al. Influence of multi-pass friction stir processing on microstructure and mechanical properties of die cast Al-7Si-3Cu aluminum alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 431
103
Nafisi S, Lashkari O, Ghomashchi R, et al. Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al-Si slurries [J]. Acta Mater., 2006, 54: 3503
104
Barrirero J, Li J H, Engstler M, et al. Cluster formation at the Si/liquid interface in Sr and Na modified Al-Si alloys [J]. Scr. Mater., 2016, 117: 16
105
Qiu C R, Miao S N, Li X R, et al. Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy [J]. Mater. Des., 2017, 114: 563
106
Wang T M, Zhao Y F, Chen Z N, et al. Combining effects of TiB2 and La on the aging behavior of A356 alloy [J]. Mater. Sci. Eng., 2015, A644: 425
107
Zamani M, Morini L, Ceschini L, et al. The role of transition metal additions on the ambient and elevated temperature properties of Al-Si alloys [J]. Mater. Sci. Eng., 2017, A693: 42
108
Xu C, Xiao W L, Zheng R X, et al. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy [J]. Mater. Des., 2015, 88: 485
109
Pramod S L, Ravikirana, Rao A K P, et al. Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy [J]. Mater. Sci. Eng., 2016, A674: 438
110
Pandee P, Patakham U, Limmaneevichitr C. Microstructural evolution and mechanical properties of Al-7Si-0.3Mg alloys with erbium additions [J]. J. Alloys Compd., 2017, 728: 844
111
Xing Y, Jia Z H, Li J H, et al. Microstructure and mechanical properties of foundry Al-Si-Cu-Hf alloy [J]. Mater. Sci. Eng., 2018, A722: 197
112
Jia Z H, Huang H L, Wang X L, et al. Hafnium in aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 105
113
Mao F, Yan G Y, Xuan Z J, et al. Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys [J]. J. Alloys Compd., 2015, 650: 896
114
Kakitani R, Cruz C B, Lima T S, et al. Transient directional solidification of a eutectic Al-Si-Ni alloy: Macrostructure, microstructure, dendritic growth and hardness [J]. Materialia, 2019, 7: 100358
Liao H C, Tang Y Y, Suo X J, et al. Dispersoid particles precipitated during the solutionizing course of Al-12 wt%Si-4 wt%Cu-1.2 wt%Mn alloy and their influence on high temperature strength [J]. Mater. Sci. Eng., 2017, A699: 201
117
Pandee P, Gourlay C M, Belyakov S A, et al. Eutectic morphology of Al-7Si-0.3Mg alloys with scandium additions [J]. Metall. Mater. Trans., 2014, 45A: 4549
118
Rokhlin L L, Dobatkina T V, Kharakterova M L. Structure of the phase equilibrium diagrams of aluminum alloys with scandium [J]. Powder Metall. Met. Ceram., 1997, 36: 128
119
Zakharov V V, Rostova T D. Effect of scandium, transition metals, and admixtures on strengthening of aluminum alloys due to decomposition of the solid solution [J]. Met. Sci. Heat Treat., 2007, 49: 435
120
Bo H, Liu L B, Jin Z P. Thermodynamic analysis of Al-Sc, Cu-Sc and Al-Cu-Sc system [J]. J. Alloys Compd., 2010, 490: 318
121
Jia M, Zheng Z Q, Gong Z. Microstructure evolution of the 1469 Al-Cu-Li-Sc alloy during homogenization [J]. J. Alloys Compd., 2014, 614: 131
122
Kairy S K, Rouxel B, Dumbre J, et al. Simultaneous improvement in corrosion resistance and hardness of a model 2xxx series Al-Cu alloy with the microstructural variation caused by Sc and Zr additions [J]. Corros. Sci., 2019, 158: 108095
123
Du Y, Liu S H, Zhang L J, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system [J]. Calphad, 2011, 35: 427
124
Dang B, Zhang X, Chen Y Z, et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy [J]. Sci. Rep., 2016, 6: 30874
125
Zhang X, Huang L K, Zhang B, et al. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment [J]. Mater. Sci. Eng., 2019, A753: 168
126
Okamoto H. Al-Ni (aluminum-nickel) [J]. J. Phase Equilib. Diffus., 2004, 25: 394
127
Okamoto H. Al-Ce (aluminum-cerium) [J]. J. Phase Equilib. Diffus., 2011, 32: 392
128
Suwanpreecha C, Pandee P, Patakham U, et al. New generation of eutectic Al-Ni casting alloys for elevated temperature services [J]. Mater. Sci. Eng., 2018, A709: 46
129
Sun Y, Hung C, Hebert R J, et al. Eutectic microstructures in dilute Al-Ce and Al-Co alloys [J]. Mater. Charact., 2019, 154: 269
130
Belov N A, Khvan A V. The ternary Al-Ce-Cu phase diagram in the aluminum-rich corner [J]. Acta Mater., 2007, 55: 5473
131
Tiwary C S, Kashyap S, Chattopadhyay K. Development of alloys with high strength at elevated temperatures by tuning the bimodal microstructure in the Al-Cu-Ni eutectic system [J]. Scr. Mater., 2014, 93: 20
132
Tiwary C S, Kashyap S, Kim D H, et al. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength [J]. Mater. Sci. Eng., 2015, A639: 359
133
Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys [J]. Acta Mater., 2001, 49: 1909
134
Booth-Morrison C, Dunand D C, Seidman D N. Coarsening resistance at 400oC of precipitation-strengthened Al-Zr-Sc-Er alloys [J]. Acta Mater., 2011, 59: 7029
135
Booth-Morrison C, Seidman D N, Dunand D C. Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al-Zr-Sc-Si alloys [J]. Acta Mater., 2012, 60: 3643
136
Erdeniz D, Nasim W, Malik J, et al. Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys [J]. Acta Mater., 2017, 124: 501
137
De Luca A, Seidman D N, Dunand D C. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys [J]. Acta Mater., 2018, 165: 1
138
Vo N Q, Seidman D N, Dunand D C. Effect of Si micro-addition on creep resistance of a dilute Al-Sc-Zr-Er alloy [J]. Mater. Sci. Eng., 2018, A734: 27
139
De Luca A, Seidman D N, Dunand D C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening [J]. Acta Mater., 2020, 194: 60
140
Guan R G, Shen Y F, Zhao Z Y, et al. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates [J]. J. Mater. Sci. Technol., 2017, 33: 215
141
Karnesky R A, Dunand D C, Seidman D N. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er [J]. Acta Mater., 2009, 57: 4022
142
Krug M E, Dunand D C, Seidman D N. Effects of Li additions on precipitation-strengthened Al-Sc and Al-Sc-Yb alloys [J]. Acta Mater., 2011, 59: 1700
143
Wen S P, Gao K Y, Li Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy [J]. Scr. Mater., 2011, 65: 592
144
Wen S P, Gao K Y, Huang H, et al. Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature [J]. J. Alloys Compd., 2013, 574: 92
145
Liu X X, Du Y, Liu S H, et al. Phase equilibria and crystal structure of ternary compounds in Al-rich corner of Al-Er-Y system at 673 and 873K [J]. J. Mater. Sci. Technol., 2021, 60: 128
146
Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy [J]. Mater. Sci. Eng., 2009, A516: 42
147
Gong B, Wen S P, Huang H, et al. Evolution of nanoscale Al3(ZrxEr1-x) precipitates in Al-6Mg-0.7Mn-0.1Zr-0.3Er alloy during annealing [J]. Acta Metall. Sin., 2010, 46: 850
Wu H, Wen S P, Wu X L, et al. A study of precipitation strengthening and recrystallization behavior in dilute Al-Er-Hf-Zr alloys [J]. Mater. Sci. Eng., 2015, A639: 307
149
Nie Z R. The effect and progress of alloying elements in aluminium [J]. China Nonferrous Met., 2009, (22): 56
聂祚仁. 铝材中合金元素的作用与发展 [J]. 中国有色金属, 2009, (22): 56
150
Bourgeois L, Dwyer C, Weyland M, et al. The magic thicknesses of θ′ precipitates in Sn-microalloyed Al-Cu [J]. Acta Mater., 2012, 60: 633
151
Zheng Y H, Liu Y X, Wilson N, et al. Solute segregation induced sandwich structure in Al-Cu(-Au) alloys [J]. Acta Mater., 2020, 184: 17
152
Bai S, Huang T T, Xu H, et al. Effects of small Er addition on the microstructural evolution and strength properties of an Al-Cu-Mg-Ag alloy aged at 200oC [J]. Mater. Sci. Eng., 2019, A766: 138351
153
Li J H, An Z H, Hage F S, et al. Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy [J]. Mater. Sci. Eng., 2019, A760: 366
154
Gariboldi E, Bassani P, Albu M, et al. Presence of silver in the strengthening particles of an Al-Cu-Mg-Si-Zr-Ti-Ag alloy during severe overaging and creep [J]. Acta Mater., 2017, 125: 50
155
Bai S, Zhou X W, Liu Z Y, et al. Effects of Ag variations on the microstructures and mechanical properties of Al-Cu-Mg alloys at elevated temperatures [J]. Mater. Sci. Eng., 2014, A611: 69
156
Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
157
Zhu Y K, Poplawsky J D, Li S R, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2020, 189: 204
158
Chen Q H, Lin S B, Yang C L, et al. Effect of ultrasonic impact on the microstructure of welded joint of 2195 Al-Li alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 367
159
Chen R, Xu Q Y, Liu B C. Simulation of the dendrite morphology and microsegregation in solidification of Al-Cu-Mg aluminum alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 173
160
Reich L, Murayama M, Hono K. Evolution of Ω phase in an Al-Cu-Mg-Ag alloy—A three-dimensional atom probe study [J]. Acta Mater., 1998, 46: 6053
161
Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing [J]. Acta Mater., 2002, 50: 3597
162
Hutchinson C R, Fan X, Pennycook S J, et al. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag Alloys [J]. Acta Mater., 2001, 49: 2827
163
Biswas A, Siegel D J, Wolverton C, et al. Precipitates in Al-Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation [J]. Acta Mater., 2011, 59: 6187
164
Chen B A, Liu G, Wang R H, et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys [J]. Acta Mater., 2013, 61: 1676
165
Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition [J]. Acta Mater., 2016, 119: 68
166
Gao Y H, Kuang J, Zhang J Y, et al. Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al-Cu-Sc alloy by isochronal aging [J]. Mater. Sci. Eng., 2020, A795: 139943
167
Shyam A, Roy S, Shin D, et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation [J]. Mater. Sci. Eng., 2019, A765: 138279
168
Poplawsky J D, Milligan B K, Allard L F, et al. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys [J]. Acta Mater., 2020, 194: 577
169
Shin D, Shyam A, Lee S, et al. Solute segregation at the Al/θ′-Al2Cu interface in Al-Cu alloys [J]. Acta Mater., 2017, 141: 327
170
Yao D M, Zhao W G, Zhao H L, et al. High creep resistance behavior of the casting Al-Cu alloy modified by La [J]. Scr. Mater., 2009, 61: 1153
171
Gao Y H, Cao L F, Kuang J, et al. Si-mediated reassembly of interfacially segregated Sc atoms in an Al-Cu-Sc alloy exposed to high-temperature creep [J]. J. Alloys Compd., 2020, 845: 156266
172
Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
173
Defay R, Bellemans A, Prigogine I. Surface Tension and Adsorption [M]. London: Longmans, 1966: 1
174
Krakauer B W, Seidman D N. Subnanometer scale study of segregation at grain boundaries in an Fe(Si) alloy [J]. Acta Mater., 1998, 46: 6145
175
Deng Y L, Zhang Y Y, Wan L, et al. Three-stage homogenization of Al-Zn-Mg-Cu alloys containing trace Zr [J]. Metall. Mater. Trans., 2013, 44A: 2470
176
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
177
Jiao Z B, Schuh C A. Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries [J]. Acta Mater., 2018, 161: 194
178
Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
179
Zhao X J, Chen H W, Wilson N, et al. Direct observation and impact of co-segregated atoms in magnesium having multiple alloying elements [J]. Nat. Commun., 2019, 10: 3243
180
Gao Y H, Cao L F, Kuang J, et al., Solute repositioning to tune the multiple microalloying effects in an Al-Cu alloy with minor Sc, Fe and Si addition [J]. Mater. Sci. Eng. A, 2020: 140509(in press)
181
Allen C M, O'Reilly K A Q, Cantor B, et al. Intermetallic phase selection in 1XXX Al alloys [J]. Prog. Mater. Sci., 1998, 43: 89
182
Zhang L F, Gao J W, Damoah L N W, et al. Removal of iron from aluminum: A review [J]. Miner. Process. Extractive Metall. Rev., 2012, 33: 99
183
Senkov O N, Shagiev M R, Senkova S V, et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties [J]. Acta Mater., 2008, 56: 3723
184
Schöbel M, Pongratz P, Degischer H P. Coherency loss of Al3(Sc,Zr) precipitates by deformation of an Al-Zn-Mg alloy [J]. Acta Mater., 2012, 60: 4247
185
Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120oC on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
186
Dorin T, Ramajayam M, Babaniaris S, et al. Precipitation sequence in Al-Mg-Si-Sc-Zr alloys during isochronal aging [J]. Materialia, 2019, 8: 100437
187
Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
188
Wang J T, Xie L, Luo K Y, et al. Improving creep properties of 7075 aluminum alloy by laser shock peening [J]. Surf. Coat. Technol., 2018, 349: 725
189
Guo M X, Li G J, Zhang Y D, et al. Influence of Zn on the distribution and composition of heterogeneous solute-rich features in peak aged Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2019, 159: 5
190
Li K, Béché A, Song M, et al. Atomistic structure of Cu-containing β″ precipitates in an Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2014, 75: 86
191
Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys [J]. Phys. Rev. Lett., 2014, 112: 225701
192
Tu W B, Tang J G, Zhang Y, et al. Effect of Sn and Cu addition on the precipitation and hardening behavior of Al-1.0Mg-0.6Si alloy [J]. Mater. Sci. Eng., 2020, A770: 138515
193
Chen K L, Liu C H, Yang J S, et al. Stabilizing Al-Mg-Si-Cu alloy by precipitation nano-phase control [J]. Mater. Sci. Eng., 2020, A769: 138513
194
Liu C H, Ma P P, Zhan L H, et al. Solute Sn-induced formation of composite β′/β″ precipitates in Al-Mg-Si alloy [J]. Scr. Mater., 2018, 155: 68
195
Liu L M, Lai Y X, Liu C H, et al. Optimized combinatorial properties of an AlMgSi(Cu) alloy achieved by a mechanical-thermal combinatorial process [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 751
196
Matsuda K, Teguri D, Uetani Y, et al. Cu-segregation at the Q′/α-Al interface in Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2002, 47: 833
197
Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 78: 245
198
Ding L P, Jia Z H, Nie J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy [J]. Acta Mater., 2018, 145: 437
199
Saito T, Ehlers F J H, Lefebvre W, et al. Cu atoms suppress misfit dislocations at the β″/Al interface in Al-Mg-Si alloys [J]. Scr. Mater., 2016, 110: 6
200
Weng Y Y, Jia Z H, Ding L P, et al. Special segregation of Cu on the habit plane of lath-like β′ and QP2 precipitates in Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2018, 151: 33
201
Liu M, Zhang X P, Körner B, et al. Effect of Sn and In on the natural ageing kinetics of Al-Mg-Si alloys [J]. Materialia, 2019, 6: 100261
202
Zhang Y D, Jin S B, Trimby P W, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion [J]. Acta Mater., 2019, 162: 19
203
Cao F H, Zheng J X, Jiang Y, et al. Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2019, 164: 207
204
Chung T F, Yang Y L, Shiojiri M, et al. An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy [J]. Acta Mater., 2019, 174: 351