Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (10): 1333-1342    DOI: 10.11900/0412.1961.2020.00400
Research paper Current Issue | Archive | Adv Search |
Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials
LIU Ming(), YAN Fuwen, GAO Chenghui
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
Cite this article: 

LIU Ming, YAN Fuwen, GAO Chenghui. Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials. Acta Metall Sin, 2021, 57(10): 1333-1342.

Download:  HTML  PDF(1887KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metallic materials are widely used in automotive, medical equipment, architecture, aerospace, and other fields. However, friction and wear are inevitable with the use of metallic materials. Therefore, it is important to study the friction and wear mechanisms of these materials for prolonging their service life. In the present work, microscratch test was carried out on sixteen metallic materials with a Rockwell C 120° diamond indenter to investigate the effects of the progressive normal force on the scratch responses of the materials. By increasing the normal force linearly from 5 mN to 30 N, both the penetration and residual depths increase linearly. The elastic recovery rate firstly increases rapidly, and then remains nearly stable. When the penetration depth is smaller than the transition depth of the indenter, only the sphere is in contact with the material, resulting in a nonlinear increase in the residual scratch width; when the conical part of the indenter is in contact with the material, the residual scratch width increases linearly. The asymptotic elastic recovery rate and scratch hardness increase linearly with the yield strength. The scratch friction coefficients of pure Mo, pure W, and 40Cr always increase nonlinearly with normal force, and the scratch friction coefficients of other metals firstly increase nonlinearly and then remain nearly stable. The variation of the scratch friction coefficient can be explained by a geometrical contact model. Adhesion friction and ploughing friction play almost the same role in the friction mechanism of QT500, and ploughing friction plays the major role in the friction mechanism of other materials under large normal forces. The asymptotic scratch friction coefficient decreases linearly with the increase of the asymptotic scratch hardness and the ratio of asymptotic scratch hardness over the elastic modulus.

Key words:  microscratch      progressive normal force      metallic material      scratch friction coefficient      geometrical contact model     
Received:  09 October 2020     
ZTFLH:  TB931  
Fund: National Natural Science Foundation of China(51705082、51875106);Scientific Research Project of Science and Education Park of Fuzhou University, Jinjiang City(2019-JJFDKY-11)
About author:  LIU Ming, professor, Tel: 15606066237, E-mail: mingliu@fzu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00400     OR     https://www.ams.org.cn/EN/Y2021/V57/I10/1333

Fig.1  Schematics of geometrical contact model between indenter and material (Fn—normal force, Ft—lateral force, α—half-apex angle of the indenter, R—radius of spherical tip of the indenter, dt—sphere-to-cone transition depth, dp—penetration depth, Sh—horizontally projected contact area, Sv—vertically projected contact area)
Fig.2  Variations of penetration depth (a) and residual depth (dr) (b) with normal force
Fig.3  Variation of elastic recovery rate (Re) with normal force (Rea—asymptotic elastic recovery rate)
Fig.4  OM images of residual scratch morphologies of Q235 (a), 45 steel (b), and Mo (c) (Ws—scratch width)
Fig.5  Variations of scratch width with normal force (a) and dp / dt (b)
Fig.6  Variations of scratch hardness (Hs) (a) and contact pressure (Pc) (b) with normal force (Have—asymptotic scratch hardness)
Fig.7  Relationships among Rea, yield strength (σy), Knoop hardness (Hk), and Have
Materialσy / GPaE / GPa
Al0.02071.1
AZ410.173-
AZ310.17643
AZ610.20744
QT5000.32168
20 steel0.245197
Q2350.235206.7
CrWMn-279
T100.3187203
45 steel0.355205.6
T80.29203
40Cr0.412209.9
T12-206
60Si2Mn0.674204
W0.75385
Mo0.97315
Table 1  Mechanical properties of sixteen metallic materials[36-59]
Fig.8  Variations of lateral force (a) and scratch friction coefficient (μ) (b) with normal force (μ0—asymptotic scratch friction coefficient)
Fig.9  Variations of ploughing friction coefficient (μp) and adhesion friction coefficient (μa) with normal force
Fig.10  Variations of μ0 with Have (a) and Have / E (b)
1 Liu M, Li S, Gao C H. Fracture toughness measurement by micro-scratch tests with conical indenter [J]. Tribology, 2019, 39: 556
刘 明, 李 烁, 高诚辉. 利用圆锥压头微米划痕测试材料断裂韧性 [J]. 摩擦学学报, 2019, 39: 556
2 Liu Z, Sun J, Shen W. Study of plowing and friction at the surfaces of plastic deformed metals [J]. Tribol. Int., 2002, 35: 511
3 Adler T A, Walters R P. Wear and scratch hardness of 304 stainless steel investigated with a single scratch test [J]. Wear, 1993, 162-164: 713
4 Meng F J, Wang J Q, Han E H, et al. Microstructure near scratch on alloy 690TT and stress corrosion induced by scratching [J]. Acta Metall. Sin., 2011, 47: 839
孟凡江, 王俭秋, 韩恩厚等. 690TT合金划痕显微组织及划伤诱发的应力腐蚀 [J]. 金属学报, 2011, 47: 839
5 van Breemen L C A, Govaert L E, Meijer H E H. Scratching poly-carbonate: A quantitative model [J]. Wear, 2012, 274-275: 238
6 Zhang G, Zhang C, Nardin P, et al. Effects of sliding velocity and applied load on the tribological mechanism of amorphous poly-ether-ether-ketone (PEEK) [J]. Tribol. Int., 2008, 41: 79
7 Li K, Shapiro Y, Li J C M. Scratch test of soda-lime glass [J]. Acta Mater., 1998, 46: 5569
8 Bandyopadhyay P, Dey A, Mukhopadhyay A K. Novel combined scratch and nanoindentation experiments on soda-lime-silica glass [J]. Int. J. Appl. Glass Sci., 2012, 3: 163
9 Beegan D, Chowdhury S, Laugier M T. Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates [J]. Surf. Coat. Technol., 2007, 201: 5804
10 Xu J, Bao X K, Jiang S Y. In vitro corrosion resistance of Ta2N nanocrystalline coating in simulated body fluids [J]. Acta Metall. Sin., 2018, 54: 443
徐 江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究 [J]. 金属学报, 2018, 54: 443
11 Kanematsu W. Subsurface damage in scratch testing of silicon nitride [J]. Wear, 2004, 256: 100
12 Lafaye S, Gauthier C, Schirrer R. A surface flow line model of a scratching tip: Apparent and true local friction coefficients [J]. Tribol. Int., 2005, 38: 113
13 Lee K, Marimuthu K P, Kim C L, et al. Scratch-tip-size effect and change of friction coefficient in Nano / micro scratch tests using XFEM [J]. Tribol. Int., 2018, 120: 398
14 Akono A T, Kabir P. Microscopic fracture characterization of gas shale via scratch testing [J]. Mech. Res. Commun., 2016, 78: 86
15 Akono A T, Randall N X, Ulm F J. Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals [J]. J. Mater. Res., 2012, 27: 485
16 Liu F X, Yang F Q, Gao Y F, et al. Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film [J]. Surf. Coat. Technol., 2009, 203: 3480
17 Yang C, Jiang B L, Feng L, et al. Effect of discharge characteristics of target on ionization and deposition of deposited particles [J]. Acta Metall. Sin., 2015, 51: 1523
杨 超, 蒋百灵, 冯 林等. 靶面放电特性对沉积粒子离化率及沉积行为的影响 [J]. 金属学报, 2015, 51: 1523
18 Liu J, Lao Y X, Wang Y. Effects of Cu on microstructure and mechanical properties of AlN/TiN-Cu nanocomposite multilayers [J]. Acta Metall. Sin., 2017, 53: 465
刘 进, 劳远侠, 汪 渊. Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响 [J]. 金属学报, 2017, 53: 465
19 Kumar A, Staedler T, Jiang X. Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime [J]. Beilstein J. Nanotechnol., 2013, 4: 66
20 Gauthier C, Schirrer R. Time and temperature dependence of the scratch properties of poly (methylmethacrylate) surfaces [J]. J. Mater. Sci., 2000, 35: 2121
21 Bandyopadhyay P, Dey A, Mandal A K, et al. New observations on scratch deformations of soda lime silica glass [J]. J. Non-Cryst. Solids, 2012, 358: 1897
22 Gao C H, Liu M. Effect of sample tilt on measurement of friction coefficient by constant-load scratch testing of copper with a spherical indenter [J]. J. Test. Eval., 2020, 48: 970
23 Gao C H, Liu M. Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter [J]. Tribol. Lett., 2019, 67: 8
24 Bensaid N, Benbahouche S, Roumili F, et al. Influence of the normal load of scratching on cracking and mechanical strength of soda-lime-silica glass [J]. J. Non-Cryst. Solids, 2018, 483: 65
25 Zhang F H, Meng B B, Geng Y Q, et al. Friction behavior in nanoscratching of reaction bonded silicon carbide ceramic with Berkovich and sphere indenters [J]. Tribol. Int., 2016, 97: 21
26 Liu M, Yan F W, Gao C H. Effect of normal load on microscratch test of copper [J]. Acta Metrol. Sin., 2020, 41: 1095
刘 明, 严富文, 高诚辉. 法向载荷对紫铜的微米划痕测试的影响 [J]. 计量学报, 2020, 41: 1095
27 Geng Y Q, Yan Y D, He Y, et al. Investigation on friction behavior and processing depth prediction of polymer in nanoscale using AFM probe-based nanoscratching method [J]. Tribol. Int., 2017, 114: 33
28 Zhang D, Sun Y, Gao C H, et al. Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter [J]. Wear, 2020, 444-445: 203158
29 Xie Z F, Yu J X, Qian L M. Load effect on the translation of friction mechanism of four materials [J]. J. Shanghai Jiaotong Univ., 2009, 43: 1930
谢祖飞, 余家欣, 钱林茂. 载荷对4种材料摩擦机制转变的影响 [J]. 上海交通大学学报, 2009, 43: 1930
30 Liu M, Yang S H, Gao C H. Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading [J]. Polym. Test., 2020, 90: 106643
31 Lafaye S, Troyon M. On the friction behaviour in nanoscratch testing [J]. Wear, 2006, 261: 905
32 Barletta M, Tagliaferri V, Gisario A, et al. Progressive and constant load scratch testing of single- and multi-layered composite coatings [J]. Tribol. Int., 2013, 64: 39
33 Xu N, Han W Z, Wang Y C, et al. Nanoscratching of copper surface by CeO2 [J]. Acta Mater., 2017, 124: 343
34 Caro J, Cuadrado N, González I, et al. Microscratch resistance of ophthalmic coatings on organic lenses [J]. Surf. Coat. Technol., 2011, 205: 5040
35 Williams J A. Analytical models of scratch hardness [J]. Tribol. Int., 1996, 29: 675
36 Li C S, Huang D B. Mechanical Engineering Materials Handbook: Metal Materials [M]. Beijing: Electronic Industry Press, 2006: 33
李春胜, 黄德彬. 机械工程材料手册: 金属材料 [M]. 北京: 电子工业出版社, 2006: 33
37 Wu G H, Xiao H, Zhou H Z, et al. Anisotropy of warm-temperature tensile properties of extruded AZ31 magnesium alloy [J]. Chin. J. Nonferrous Met., 2017, 27: 57
吴国华, 肖 寒, 周慧子等. 挤压态AZ31镁合金温热拉伸性能的各向异性 [J]. 中国有色金属学报, 2017, 27: 57
38 Cao F H, Long S Y, Liao H M, et al. Effects of high strain rate on mechanical properties of as-extruded AZ61 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2009, 29: 501
曹凤红, 龙思远, 廖慧敏等. 高应变速率对挤压态AZ61镁合金力学行为的影响 [J]. 特种铸造及有色合金, 2009, 29: 501
39 Xue Y D, Zhao Y L, He Q, et al. Reason analysis and solution method for unqualified performance of 20 steel forging [J]. Heavy Casting Forging, 2013, (1): 30
薛永栋, 赵阳磊, 贺 强等. 20钢锻件性能不合原因分析及对策 [J]. 大型铸锻件, 2013, (1): 30
40 Huang B, Gong W B, Gao H W, et al. High Si nodular iron and its application development [J]. Mod. Cast Iron, 2018, 38: 29
黄 彪, 龚文邦, 高辉武等. 高Si球墨铸铁及其应用发展 [J]. 现代铸铁, 2018, 38: 29
41 Zhang X, Cheng H M, Li J Y, et al. Study on microstructure and mechanical properties of T10 steel quenched by atomized water with nitrogen gas [J]. Hot Working Tech., 2015, 44: 219
张 雪, 程赫明, 李建云等. T10钢经常压高速气雾淬火工艺处理后组织及性能的研究 [J]. 热加工工艺, 2015, 44: 219
42 Jiang Z H, Wang B Y, Xiao W C. Mechanical behaviors of steel 45 during compression in the low-frequency vibration [J]. J. Plast. Eng., 2017, 24: 166
姜志宏, 王宝雨, 校文超. 低频振动作用下45钢压缩力学行为分析 [J]. 塑性工程学报, 2017, 24: 166
43 Liu Y, Liu X. Development of ultrafine-grained steel for high strength construction [J]. Foundry Technol., 2017, 38: 1844
刘 洋, 刘 煦. 高强建筑用超细晶粒钢的开发研究 [J]. 铸造技术, 2017, 38: 1844
44 Duan Z X, Ren S K, Xi X W, et al. Magnetizing reversal characteristic of 40Cr steel during stress-magnetizing process [J]. J. Iron Steel Res., 2016, 28: 77
段振霞, 任尚坤, 习小文等. 40Cr钢应力磁化过程中的磁化反转特征 [J]. 钢铁研究学报, 2016, 28: 77
45 Liu F Z. Stress analysis of decarburized surface of spring steel 60Si2Mn [J]. J. Lanzhou Univ. Technol., 2006, 32: 28
刘凤智. 弹簧钢60Si2Mn脱碳表面的应力分析 [J]. 兰州理工大学学报, 2006, 32: 28
46 Jing Q M, Bi Y, Wu Q, et al. Yield strength of molybdenum at high pressures [J]. Rev. Sci. Instrum., 2007, 78: 073906
47 Kadykova G N, Surovaya G N. Temperature coefficient of the elasticity modulus of niobium alloys [J]. Met. Sci. Heat Treat., 1968, 10: 400
48 Bočan J, Maňák J, Jäger A. Nanomechanical analysis of AZ31 magnesium alloy and pure magnesium correlated with crystallographic orientation [J]. Mater. Sci. Eng., 2015, A644: 121
49 Kakiuchi T, Uematsu Y, Teratani T, et al. Effect of film elastic modulus on fatigue behaviour of DLC-coated wrought magnesium alloy AZ61 [J]. Procedia Eng., 2011, 10: 1087
50 Shang Q Y, Gong J X. Experimental research on elastic-plastic mechanical properties of spheroidal graphite cast iron at high termperature [J]. Hot Working Tech., 2000, (2): 19
商全义, 弓金霞. 球墨铸铁高温弹塑性力学性能的实验研究 [J]. 热加工工艺, 2000, (2): 19
51 Kucher V N. Refinement of parameters of the model for nonlocalized damage accumulation to describe deformation of the steel 20 [J]. Strength Mater., 2010, 42: 735
52 Wang L M, Feng Y, Chen F X, et al. Elasto-plastic test of Q235 steel bending beam with cracking resistance [J]. J. Iron Steel Res., Int., 2013, 20: 57
53 Peng Z J, Miao H Z, Qi L H, et al. Microstructure and mechanical properties of titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma [J]. Chin. Sci. Bull., 2003, 48: 1316
54 Luo X X, Yao Z J, Zhang P Z, et al. Tribological behaviors of Fe-Al-Cr-Nb alloyed layer deposited on 45 steel via double glow plasma surface metallurgy technique [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3694
55 Fan X. Microstructures and mechanical properties of high-carbon pearlitic steel after deformation [J]. Foundry Technol., 2014, 35: 247
樊 雄. 高碳珠光体钢形变后的微观组织及力学性能研究 [J]. 铸造技术, 2014, 35: 247
56 Liu Y, Wang L J, Wang D P, et al. Nano mechanical properties of 40Cr surface layer after ultrasonic surface rolling processing [J]. J. Tianjin Univ., 2012, 45: 656
刘 宇, 王立君, 王东坡等. 超声表面滚压加工40Cr表层的纳米力学性能 [J]. 天津大学学报, 2012, 45: 656
57 Shen X Z. Shear modulus and heat treatment of metal materials [J]. Mach. Design Manu. Eng., 1998, 27(6): 71
沈学忠. 金属材料的切变模量与热处理 [J]. 机械设计与制造工程, 1998, 27(6): 71
58 Jiang D Y, Zhong S Y, Xiao W B, et al. Structural, mechanical, electronic, and thermodynamic properties of pure tungsten metal under different pressures: A first-principles study [J]. Int. J. Quantum Chem., 2020, 120: e26231
59 Farraro R, Mclellan R B. Temperature dependence of the Young's modulus and shear modulus of pure nickel, platinum, and molybdenum [J]. Metall. Trans., 1977, 8A: 1563
60 Xue H, Li K, Wang S, et al. Hardness indentation size effect analysis of 316L austenitic stainless steels during cold working [J]. China Mech. Eng., 2019, 30: 105
薛 河, 李 凯, 王 帅等. 冷加工过程中316L奥氏体不锈钢硬度压痕尺寸效应分析 [J]. 中国机械工程, 2019, 30: 105
61 Liu M, Proudhon H. Finite element analysis of contact deformation regimes of an elastic-power plastic hardening sinusoidal asperity [J]. Mech. Mater., 2016, 103: 78
62 Bull S J, Berasetegui E G. An overview of the potential of quantitative coating adhesion measurement by scratch testing [J]. Tribol. Int., 2006, 39: 99
63 Ni W Y, Cheng Y T, Lukitsch M, et al. Effects of the ratio of hardness to Young's modulus on the friction and wear behavior of bilayer coatings [J]. Appl. Phys. Lett., 2004, 85: 4028
[1] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[2] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[3] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[4] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[5] Mindong CHEN, Fan ZHANG, Zhiyong LIU, Chaohui YANG, Guoqing DING, Xiaogang LI. Galvanic Series of Metals and Effect of Alloy Compositions on Corrosion Resistance in Sanya Seawater[J]. 金属学报, 2018, 54(9): 1311-1321.
[6] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[7] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[8] Yu PAN, Diantao ZHANG, Yuning TAN, Zhen LI, Yufeng ZHENG, Li LI. Mechanical Properties of Biomedical Ultrafine Grained Mg-3Sn-0.5Mn Alloy Processed by Equal-Channel Angular Pressing[J]. 金属学报, 2017, 53(10): 1357-1363.
[9] TAO Nairong, LU Ke. PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION[J]. 金属学报, 2014, 50(2): 141-147.
[10] HONG Youshi ZHAO Aiguo QIAN Gui'an. ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY--HIGH--CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS[J]. 金属学报, 2009, 45(7): 769-780.
[11] DU Ting (Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing 100081). PHYSICAL-CHEMISTRY EFFECT OF RARE EARTH ELEMENTS ON METALLIC MATERIALS[J]. 金属学报, 1997, 33(1): 69-77.
No Suggested Reading articles found!