Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (10): 1433-1440    DOI: 10.11900/0412.1961.2020.00060
Current Issue | Archive | Adv Search |
Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly
JIANG Lin1,2, ZHANG Liang1,3, LIU Zhiquan1,2,4()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
4 Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Cite this article: 

JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly. Acta Metall Sin, 2020, 56(10): 1433-1440.

Download:  HTML  PDF(1448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sputtering has been widely used to prepare thin film due to its good cohesion with substrate, high purity, compactness, repeatability and large area manufacture. Target is a key consumable material during production of thin film by sputtering. Generally, targets are mostly rare and high purity metal, so the cost of target is very high. In order to reduce the cost of target, to improve its stiffness, and to enhance the electrical and thermal conductivity, target is usually connected with backplane to form the target assembly. The main connection method is diffusion welding, which is used in the industrial production. However, the target and the backplane are usually two different materials with different physical properties such as coefficient of thermal expansion (CTE) and thermal conductivity. During the welding or soldering process of target, the mismatch of physical properties will lead to residual stress in target, which has a direct influence on the thickness and microstructure uniformity of the films. Hence, it is very meaningful to investigate the residual stress in target and to study its influencing factor. Based on the Co/Al/Cu sandwich structure of backplane diffusion welding, the effects of Al interlayer and Ni(V) layer on welding residual stress were studied by finite element method. It was found that the application of the Al interlayer not only can make diffusion welding process easier and lower the diffusion welding temperature, but also can reduce the maximum residual stress from 142 MPa to 126 MPa. Furthermore, the location of the maximum residual stress also changes from the outer edge of the interface between target and backplane to the position near the symmetrical axis of target and Co/Al interface. Furthermore, there is an optimal thickness for Al interlayer (7 mm). Although the existence of Ni(V) layer can inhibit the generation of brittle intermetallic compounds at the interface of Co/Al and Cu/Al, it also increases the residual stress. Moreover, we find that the increase of residual stress with Ni(V) layer at only Co/Al interface, is smaller than that of adding Ni(V) layer at both Co/Al and Cu/Al interfaces.

Key words:  diffusion welding      Al interlayer      Ni(V) transition layer      welding residual stress      Co target      finite element simulation     
Received:  24 February 2020     
ZTFLH:  TG404  
Fund: National Key Research and Development Program of China(2017YFB0305501)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00060     OR     https://www.ams.org.cn/EN/Y2020/V56/I10/1433

MaterialMaterial modelRadius / mmThickness / mmThermal elementStructural element
Co targetElasticity452.3Plane 77Plane 82
Cu backplaneElasticity507.4Plane 77Plane 82
Al interlayerElastoplasticity451.5Plane 77Plane 82
Ni(V) layerElastoplasticity450.1Plane 77Plane 82
Table 1  Material models, sizes and element types of target assembly
Material

Thermal conductivity

W·m-1·K-1

Elastic modulus

GPa

Density

kg·m-3

c

J·kg-1·K-1

α

10-6 K-1

ν
Co target89.5211.0885047313.90.32
Cu backplane369.0128.0888939016.50.34
Al interlayer238.070.6270090023.80.33
Ni(V) layer76.5199.0891057414.90.33
Table 2  Physical properties of target assembly
Fig.1  Geometric model of diffusion welded target assembly
Fig.2  Finite element model of diffusion welded target assembly
Fig.3  Sample of diffusion welded target assembly with stress test points before (a) and after (b) cutting (The dimension of target assembly is shown in Table 1)
Fig.4  Effects of Al interlayer on the residual stress in the target assembly (Arrows indicate the positions of maximum residual stress)
Color online
(a) with Al interlayer (b) without Al interlayer
Fig.5  Effects of Al interlayer thickness on the maximum residual stress in target assembly
Case

Thickness of Al

interlayer / mm

Thickness of Ni(V) layer at

Co/Al interface / mm

Thickness of Ni(V) layer at

Cu/Al interface / mm

Maximum residual

stress / MPa

I400124.7
II40.30128.7
III40.30.3136.9
Table 3  Effects of Ni(V) layer on maximum residual stress of target assembly
Fig.6  Effects of Ni(V) layer on the residual stress of target assembly
Color online
(a) just Al interlayer (b) Ni(V) (0.3 mm) at Co/Al interface (c) Ni(V) (0.3 mm) at Co/Al and Cu/Al interface
Fig.7  Distributions of residual stress in target assembly
Color online
(a) X component of residual stress (b) Y component of residual stress(c) Z component of residual stress (d) von Mises equivalent residual stress
Fig.8  Experimental and simulated radial residual stresses on the surface of target assembly
Fig.9  Experimental and simulated circumferential residual stresses on the surface of target assembly
[1] Martens S, Mack W, Courtade F, et al. Laser-based target preparation in 3D integrated electronic packages [J]. J. Electron. Packag., 2009, 131: 031006
doi: 10.1115/1.3144157
[2] Huang D S, Tu W B, Zhang X M, et al. Using Taguchi method to obtain the optimal design of heat dissipation mechanism for electronic component packaging [J]. Microelectron. Reliab., 2016, 65: 131
[3] Huang M L, Yang F. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate [J]. Sci. Rep., 2014, 4: 7117
[4] Takahashi K, Hoshino M, Yonemura H, et al. Development of advanced 3D chip stacking technology with ultra-fine interconnection [A]. 2001 Proceedings. 51st Electronic Components and Technology Conference [C]. Orlando, FL, USA: IEEE, 2001: 541
[5] Ge Z P, Wang K K. Optimization of structure for BGA packaging based on Taguchi method [A]. 2015 16th International Conference on Electronic Packaging Technology (ICEPT) [C]. Changsha: IEEE, 2015: 1433
[6] Lai L F, Wang J X, Wang H T, et al. Structures and properties of C-doped NiCr thin film deposited by closed-field unbalanced magnetron sputtering [J]. J. Electron. Mater., 2017, 46: 552
[7] Lin Y P, Hsieh T E, Chen Y C, et al. Characteristics of Cu2ZnSn (SxSe1-x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment [J]. Sol. Energy Mater. Sol. Cells, 2017, 162: 55
[8] Shih C W, Chin A, Lu C F, et al. Remarkably high hole mobility metal-oxide thin-film transistors [J]. Sci. Rep., 2018, 8: 889
[9] Zeng Y, Liang G X, Fan P, et al. The structural, optical and thermoelectric properties of single target sputtered Cu2-ZnSn-(S, Se)4 thin film [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 13763
[10] Ling Q. Investigation of manufacture of TiO2 target (Nb2O5) and its performance [D]. Shenzhen: Shenzhen University, 2017
(凌 奇. Nb2O5掺杂TiO2靶材的制备及性能的研究 [D]. 深圳: 深圳大学, 2017)
[11] Zhao B H, Fan H B, Sun Y J. Molybdenum sputtering film and target for TFT-LCD manufacture [J]. China Molybd. Ind., 2011, 35(1): 7
(赵宝华, 范海波, 孙院军. TFT-LCD制造用钼薄膜溅射及其靶材 [J]. 中国钼业, 2011, 35(1): 7)
[12] Yang B C, Cui H L. Manufacture and application of sputtering target materials [J]. Vacuum, 2001, (3): 11
(杨邦朝, 崔红玲. 溅射靶材的制备与应用 [J]. 真空, 2001, (3): 11)
[13] Jiang L, Zhang L, Liu Z Q. Optimal design of Co/In/Cu sputtering target assembly using finite element method and Taguchi method [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1407
[14] Shah R P, Steele D E, Turner W R, et al. Ni-plated target diffusion bonded to a backing plate and method of making same [P]. PU.S. at, 6555250, 2003
[15] Zhu R D, Dong W C, Lin H Q, et al. Finite element simulation of welding residual stress for buffer beam of CRH2A high speed train [J]. Acta Metall. Sin., 2014, 50: 944
(朱瑞栋, 董文超, 林化强等. CRH2A 型动车组缓冲梁结构焊接残余应力的有限元模拟 [J]. 金属学报, 2014, 50: 944)
[16] Kovalev S P, Miranzo P, Osendi M I. Finite element simulation of thermal residual stresses in joining ceramics with thin metal interlayers [J]. J. Am. Ceram. Soc., 1998, 81: 2342
[17] Zhang Z G, Qi B Y, Jin Z W, et al. Perylene diimides: A thickness-insensitive cathode interlayer for high performance polymer solar cells [J]. Energy Environ. Sci., 2014, 7: 1966
[18] Ali R, Sebastiani M, Bemporad E. Influence of Ti-TiN multilayer PVD-coatings design on residual stresses and adhesion [J]. Mater. Des., 2015, 75: 47
[19] Lee I H, Kim T G, Park Y. Growth of crack-free AlGaN film on high-temperature thin AlN interlayer [J]. J. Cryst. Growth, 2002, 234: 305
doi: 10.1016/S0022-0248(01)01702-X
[20] Lin C R, Kuo C T, Chang R M. Improvement in adhesion of diamond films on cemented WC substrate with Ti-Si interlayers [J]. Diam. Relat. Mater., 1998, 7: 1628
[21] Wang B L, Li Y Z, Huo Y Z. Thermal stress distributions and optimization on stress reductions with or/and without linearly graded interlayers [J]. Composites, 2011, 42B: 993
[22] Liu C Y, Tu K N, Sheng T T, et al. Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization [J]. J. Appl. Phys., 2000, 87: 750
[23] Jang G Y, Duh J G. Elemental redistribution and interfacial reaction mechanism for the flip chip Sn-3.0Ag-(0.5 or 1.5)Cu solder bump with Al/Ni(V)/Cu under-bump metallization during aging [J]. J. Electron. Mater., 2006, 35: 2061
[24] Resnik D, Vrtačnik D, Aljančič U, et al. Influence of mechanical stress on adhesion properties of DC magnetron sputtered Ti/NiV/Ag layers on n+ Si substrate [J]. Microelectron. Eng., 2008, 85: 1603
[25] Li R F, Chen H N, Yu L, et al. GB/T 31218-2014 Metallic materials—Determination of residual stress—Sectioning relaxation strain-gage method [S]. Beijing: China Standard Press, 2015
(李荣锋, 陈怀宁, 余 立等. GB/T 31218-2014 金属材料 残余应力测定 全释放应变法 [S]. 北京: 中国标准出版社, 2015)
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[4] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[6] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[7] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[8] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[9] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[10] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[11] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[12] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
[13] XU Jiayu CHEN Hongtao LI Mingyu. STUDY ON LEAD-FREE SOLDER JOINT RELIABILITY BASED ON GRAIN ORIENTATION[J]. 金属学报, 2012, 48(9): 1042-1048.
[14] DENG De’an KIYOSHIMA Shoichi. NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI–PASS BUTT–WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE[J]. 金属学报, 2010, 46(2): 195-200.
[15] WU Bo WEI Yueguang TAN Jiansong WANG Jianping. NUMERICAL SIMULATIONS OF THE INTERGRANULAR FRACTURE IN NANOCRYSTALLINE Ni[J]. 金属学报, 2009, 45(9): 1077-1082.
No Suggested Reading articles found!