Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 727-741    DOI: 10.11900/0412.1961.2018.00027
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Directionally Solidified Porous Metals: A Review
Yanxiang LI1,2(), Xiaobang LIU1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
Cite this article: 

Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review. Acta Metall Sin, 2018, 54(5): 727-741.

Download:  HTML  PDF(4454KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper reviews the recent development of porous metals with directional pores, from the aspects of the solidification principle, fabrication method, properties and applications. This kind of porous metals is fabricated by a directional solidification process in pressurized gas atmosphere, utilizing a metal/gas eutectic reaction (Gasar). By controlling solidification direction, not only lotus-type porous structure but also radial-type porous structure can be produced. The coupled growth of solid/gas phases is discussed by applying a solution procedure similar to that in the classical Jackson-Hunt eutectic growth model. The working window considering hydrogen escape and the formation of directional solidification porous structure has been given. Three fabrication techniques including mold casting, continuous casting techniques and Bridgman-type directional solidification method are introduced. Two new progresses about the fabrication of directionally solidified porous structure are described in details: porous alloy with uniform directional pores and high-porosity directionally solidified porous aluminum. Since directionally solidified porous metals exhibit peculiar physical and mechanical properties such as light-weight, air and water permeability, and anisotropy of thermal and mechanical properties, they are suitable for applications in heat sinks, filters, biomaterials and so on.

Key words:  porous metal      directional solidification      metal/gas eutectic      Gasar      lotus-type metal     
Received:  18 January 2018     
ZTFLH:  TG249  
Fund: Supported by National Natural Science Foundation of China (No.51371104)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00027     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/727

Fig.1  Cu-rich portion of Cu-H phase diagram under a hydrogen pressure of 0.1 MPa (T—temperature; XH—composition of hydrogen; Tm—melting temperature; Pext—external pressure; TE—eutectic temperature; XH,E—eutectic composition of hydrogen; XH,S—composition of hydrogen in solid phase)[18]
Fig.2  Temperature dependence of hydrogen solubility in solid and liquid metals at 0.1 MPa hydrogen pressure[45]
Fig.3  A schematic diagram for metal-gas eutectic unidirectional solidification and the corresponding coordinate system for solving the solute field (L—liquid phase; G—gas phase; S—solid phase; v—solidification velocity; rG—radius of the gas pore; rS—one half of the interpore spacing)[17]
Fig.4  Comparison between predicted porosities and experimental values on Mg-H system at different hydrogen (a) and argon (b) gas pressures (Ptotal—total gas pressure;PH2—hydrogen pressure; PAr—argon pressure)[34]
Fig.5  A comparison between experimental results and theoretical values of pore diameter and interpore spacing at different total gas pressures (v=0.4 mm/s, T=1023 K)[17]
Fig.6  The working window of the partial pressure ratio and superheat (ΔT′) for the formation of lotus-type porous magnesium (L1—critical line for the formation of lotus-type porous magnesium; L2—critical line for the hydrogen escaping; L3—optimized parameter)[50]
Fig.7  A schematic diagram for the effect of argon partial pressure on metal-hydrogen phase diagram[50]
Fig.8  Typical structures of radial porous Mg/Cu[51]
(a) three-dimensional structure of radial po-rous Mg
(b) cross section of radial porous Mg
(c) cross section of radial porous Cu
Fig.9  Three apparatus schematics for fabrication of directionally solidified porous metals by mold casting method
(a) common device (1—graphite stopper; 2—graphite crucible; 3—heating coil; 4—high pressure chamber; 5—molten metal; 6—mold; 7—copper chiller)
(b) 90° rotation device (c) 180° rotation device
Fig.10  A schematic drawing of Bridgman directional solidification apparatus[37]
(a) melting and temperature holding (b) unidirectional solidification
Fig.11  Cross sections parallel (upper row) and perpendicular (lower row) to solidification direction of directionally solidified porous Cu-Mn alloy[61]
Fig.12  Relation between porosity and solidification velocity in directionally solidified porous metals
Fig.13  Experimental results of heat transfer coefficient of directionally solidified porous copper heat sink under different heat power densities (ΔP—pressure drop; U—flow rate)[97]
[1] Shapovalov V I.Method for manufacturing porous articles [P]. US Pat, 5181549, 1993
[2] Shapovalov V, Boyko L.Gasar—A new class of porous materials[J]. Adv. Eng. Mater., 2004, 6: 407
[3] Hyun S K, Murakami K, Nakajima H.Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2001, A299: 241
[4] Simone A E, Gibson L J.The tensile strength of porous copper made by the GASAR process[J]. Acta Mater., 1996, 44: 1437
[5] Ogushi T, Chiba H, Nakajima H.Development of lotus-type porous copper heat sink[J]. Mater. Trans., 2006, 47: 2240
[6] Zhang H W, Chen L T, Liu Y, et al.Experimental study on heat transfer performance of lotus-type porous copper heat sink[J]. Int. J. Heat Mass Transfer, 2013, 56: 172
[7] Liu Y, Chen H F, Zhang H W, et al.Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant[J]. Int. J. Heat Mass Transfer, 2015, 80: 605
[8] Alvarez K, Hyun S K, Nakano T, et al.In vivo osteocompatibility of lotus-type porous nickel-free stainless steel in rats[J]. Mater. Sci. Eng., 2009, C29: 1182
[9] Du H, Qi J Z, Lao Y X, et al.Oil retaining capability and sliding friction behaviour of porous copper with elongated cylindrical pores[J]. J. Mater. Process. Technol., 2012, 212: 1796
[10] Boiko L V.Formation of porous structures in metal-hydrogen systems[J]. Mater. Sci., 2002, 38: 544
[11] Paradies C J, Tobin A, Wolla J.The effect of GASAR processing parameters on porosity and properties in aluminum alloy [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 297
[12] Apprill J M, Poirier D R, Maguire M C, et al.GASAR porous metals process control [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 291
[13] Yamamura S, Shiota H, Murakami K, et al.Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen[J]. Mater. Sci. Eng., 2001, A318: 137
[14] Nakajima H, Ikeda T, Hyun S K.Fabrication of lotus-type porous metals and their physical properties[J]. Adv. Eng. Mater., 2004, 6: 377
[15] Drenchev L, Sobczak J, Sobczak N, et al.A comprehensive model of ordered porosity formation[J]. Acta Mater., 2007, 55: 6459
[16] Liu Y, Li Y X.A theoretical study of Gasarite eutectic growth[J]. Scr. Mater., 2003, 49: 379
[17] Liu Y, Li Y X, Wan J, et al.Metal-gas eutectic growth during unidirectional solidification[J]. Metall. Mater. Trans., 2006, 37A: 2871
[18] Zhang H W, Li Y X, Liu Y.Study of metal-hydrogen binary phase diagram in Gasar process[J]. Acta Metall. Sin., 2005, 41: 55(张华伟, 李言祥, 刘源. Gasar工艺中金属-氢二元相图的研究[J]. 金属学报, 2005, 41: 55)
[19] Zhang H W, Li Y X, Liu Y.Gas pressure condition for obtaining uniform lotus-type porous structure by Gasar process[J]. Acta Metall. Sin., 2006, 42: 1171(张华伟, 李言祥, 刘源. Gasar工艺获得均匀藕状多孔结构的气压选择[J]. 金属学报, 2006, 42: 1171
[20] Zhang H W, Li Y X, Liu Y.Evaluation of porosity in lotus-type porous Cu fabricated with Gasar process[J]. Acta Metall. Sin., 2006, 42: 1165(张华伟, 李言祥, 刘源. 藕状规则多孔Cu气孔率的理论预测[J]. 金属学报, 2006, 42: 1165)
[21] Liu Y, Li Y X.Theoretical analysis of bubble nucleation in GASAR materials[J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 830
[22] Zhang H W, Li Y X, Liu Y.The critical processing conditions for directional solidification of solid/gas eutectics[J]. Acta Metall. Sin., 2007, 43: 589(张华伟, 李言祥, 刘源. 固/气共晶定向凝固中的工艺判据[J]. 金属学报, 2007, 43: 589)
[23] Xie J X, Liu X H, Liu X F, et al.Fabrication and characterization of lotus-type porous pure copper bar[J]. Chin. J. Nonferrous Met., 2005, 15: 1869(谢建新, 刘新华, 刘雪峰等. 藕状多孔纯铜棒的制备与表征[J]. 中国有色金属学报, 2005, 15: 1869)
[24] Liu X H, Yao D, Liu X F, et al.Deformation behaviors and constructive relation of lotus-type porous copper under compressive direction perpendicular to pores[J]. Chin. J. Nonferrous Met., 2009, 19: 1237(刘新华, 姚迪, 刘雪峰等. 藕状多孔铜沿垂直于气孔方向的压缩变形行为与本构关系[J]. 中国有色金属学报, 2009, 19: 1237)
[25] Li Z J, Jin Q L, Yang T W, et al.A thermodynamic model for directional solidification of metal-hydrogen eutectic[J]. Acta Metall. Sin., 2014, 50: 507(李再久, 金青林, 杨天武等. 金属-氢共晶定向凝固热力学模型[J]. 金属学报, 2014, 50: 507)
[26] Li X M, Li W Q, Jin Q L, et al.A steady solution of the gasar eutectic growth in directional solidification[J]. Chin. Phys., 2013, 22B: 078101
[27] Du H, Song G H, Nakajima H, et al.Study on lotus-type porous copper electroplated with a Ni coating on inner surface of pores[J]. Appl. Surf. Sci., 2013, 264: 772
[28] Olga K, Xu Z B, Hai H, et al.Pore structure and mechanical properties of directionally solidified porous aluminum alloys[J]. China Foundry, 2014, 11: 1
[29] Park J S, Hyun S K, Suzuki S, et al.Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique[J]. Acta Mater., 2007, 55: 5646
[30] He Y, Li Y X, Zhang H W, et al.Influence of withdrawing speed on the porous structures of Gasar ingots fabricated by Bridgman method[J]. J. Mater. Process. Technol., 2017, 245: 106
[31] Onishi H, Hyun S K, Nakajima H.Effect of hydrogen pressure on moisture-based fabrication of lotus-type porous nickel[J]. Mater. Trans., 2006, 47: 2120
[32] Onishi H, Ueno S, Nakajima H.An effect of addition of NiO powder on pore formation in lotus-type porous nickel[J]. Mater. Trans., 2008, 49: 2670
[33] Liu Y, Li Y X, Zhang H W.Fabrication of lotus-structured porous magnesium with Gasar process[J]. Acta Metall. Sin., 2004, 40: 1121(刘源, 李言祥, 张华伟. 藕状多孔金属Mg的Gasar工艺制备[J]. 金属学报, 2004, 40: 1121)
[34] Liu Y, Li Y X, Wan J, et al.Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification[J]. Mater. Sci. Eng., 2005, A402: 47
[35] Yang Q Q, Liu Y, Li Y X, et al.Pore structure of unidirectional solidified lotus-type porous silicon[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 3517
[36] Ide T, Iio Y, Nakajima H.Fabrication of porous aluminum with directional pores through continuous casting technique[J]. Metall. Mater. Trans., 2012, 43A: 5140
[37] Liu X B, Li Y X, He Y.Fabrication of high-porosity lotus-type porous aluminum in vacuum[J]. Metall. Mater. Trans., 2017, 48A: 1264
[38] Jiang G R, Li Y X, Liu Y.Experimental study on the pore structure of directionally solidified porous Cu-Mn alloy[J]. Metall. Mater. Trans., 2010, 41A: 3405
[39] Jiang G R, Li Y X, Liu Y.Influence of solidification mode on pore structure of directionally solidified porous Cu-Mn alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 88
[40] Zhang X M, Li Y X, Liu Y, et al.Influence of the solidification temperature range on Gasar structures made from Cu-Mn alloys[J]. Int. J. Mater. Res., 2014, 105: 869
[41] Kashihara M, Suzuki S, Kawamura Y, et al.Fabrication of lotus-type porous carbon steel slabs by continuous casting technique in nitrogen atmosphere[J]. Metall. Mater. Trans., 2010, 41A: 2377
[42] Kashihara M, Yonetani H, Kobi T, et al.Fabrication of lotus-type porous carbon steel via continuous zone melting and its mechanical properties[J]. Mater. Sci. Eng., 2009, A524: 112
[43] Ikeda T, Aoki T. Nakajima H, Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property[J]. Metall. Mater. Trans., 2005, 36A: 77
[44] Park J S, Hyun S K, Suzuki S, et al.Fabrication of lotus-type porous Al-Si alloys using the continuous casting technique[J]. Metall. Mater. Trans., 2009, 40A: 406
[45] Zhang H W, Li Y X, Liu Y.Hydrogen solubility in pure metals for Gasar process[J]. Acta Metall. Sin., 2007, 43: 113(张华伟, 李言祥, 刘源. 氢在Gasar工艺常用纯金属中的溶解度[J]. 金属学报, 2007, 43: 113)
[46] Shapovalov V I.Formation of ordered gas-solid structures via solidification in metal-hydrogen systems [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 281
[47] Apprill J M.Process control of GASAR porous metals [D]. Arizona: The University of Arizona, 1998
[48] Campbell J.Complete Casting Handbook: Metal Casting Processes, Techniques and Design[M]. Oxford: Butterworth-Heinemann, 2011: 24
[49] Zhang H W, Li Y X.Study on bubble nucleation in liquid metal[J]. Acta Phys. Sin., 2007, 56: 4864(张华伟, 李言祥. 金属熔体中气泡形核的理论分析[J]. 物理学报, 2007, 56: 4864)
[50] Zhang H W.Theoretical and experimental study on unidirectional solidification of metal-gas eutectics [D]. Beijing: Tsinghua University, 2006(张华伟. 金属-气体共晶定向凝固的研究 [D]. 北京: 清华大学, 2006)
[51] Wang X.Fabrication of radial-type porous metal by bidirectional solidification of metal-gas eutectics [D]. Beijing: Tsinghua University, 2008(王雪. 金属-气体共晶二维定向凝固制备放射状规则多孔金属 [D]. 北京: 清华大学, 2008)
[52] Wang X, Li Y X, Liu Y.Structural features in radial-type porous magnesium fabricated by radial solidification[J]. Mater. Sci. Eng., 2007, A444: 306
[53] Nakahata T, Nakajima H.Fabrication of lotus-type silver with directional pores by unidirectional solidification in oxygen atmosphere[J]. Mater. Trans., 2005, 46: 587
[54] Lee Y S, Hyun S K.Centrifugal casting for unpressurized fabrication of lotus-type porous copper[J]. Mater. Lett., 2012, 78: 92
[55] Hyun S K, Nakajima H.Effect of solidification velocity on pore morphology of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Lett., 2003, 57: 3149
[56] Hyun S K, Uchikoshi M, Mimura K, et al.Fabrication of porous high-purity iron with directional pores by continuous zone melting technique[J]. Mater. Trans., 2010, 51: 2076
[57] Sugiyama M, Hyun S K, Tane M, et al.Fabrication of lotus-type porous NiTi shape memory alloys using the continuous zone melting method and tensile property[J]. High Temp. Mater. Process., 2007, 26: 297
[58] He Y.Structural optimization of directionally solidified porous copper ingot [D]. Beijing: Tsinghua University, 2017(何蕴. 定向凝固多孔铜锭的结构优化 [D]. 北京: 清华大学, 2017)
[59] Jiang G R, Li Y X.A model for calculating hydrogen solubility in liquid transition metals[J]. Metall. Mater. Trans., 2011, 42A: 1038
[60] Jiang G R, Li Y X, Liu Y.Calculation of hydrogen solubility in molten alloys[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1130
[61] Jiang G R.Study on hydrogen solubility in molten alloys and directional solidification of porous Cu-Mn alloy [D]. Beijing: Tsinghua University, 2010(蒋光锐. 氢在合金熔体中的溶解度与定向凝固多孔铜锰合金的研究 [D]. 北京: 清华大学, 2010)
[62] Hoshiyama H, Ikeda T, Nakajima H.Fabrication of lotus-type porous magnesium and its alloys by unidirectional solidification under hydrogen atmosphere[J]. High Temp. Mater. Process., 2007, 26: 303
[63] Zhang X M.Study on fabrication of bimodal porous metal by the Gasar and dealloying processes [D]. Beijing: Tsinghua University, 2013(张星明. Gasar-脱合金制备复合多孔金属的研究 [D]. 北京: 清华大学, 2013)
[64] Aoki T, Ikeda T, Nakajima H.Fabrication of lotus-type porous brass by zinc diffusion into porous copper[J]. Mater. Trans., 2003, 44: 89
[65] Ikeda T, Nakajima H.Titanium coating of lotus-type porous stainless steel by vapour deposition technique[J]. Mater. Lett., 2004, 58: 3807
[66] Du M, Zhang H W, Li Y X, et al.Depositing and alloying on the inner surface of Gasar Cu pores by plating and annealing treatment[J]. Appl. Surf. Sci., 2015, 342: 69
[67] Du M, Zhang H W, Li Y X.Inner surface alloying on pores of lotus-type porous copper through electroless plating with supersonic vibration and annealing treatment[J]. Surf. Coat. Technol., 2015, 261: 1
[68] Du M, Zhang H W, Li Y X, et al.Synthesis of a bimodal porous Cu with nanopores on the inner surface of Gasar pores: Influences of preparation conditions[J]. Appl. Surf. Sci., 2016, 360: 148
[69] Du M, Zhang H W, Li Y X, et al.Fabrication and wettability of monolithic bimodal porous Cu with Gasar macro-pores and dealloying nano-pores[J]. Appl. Surf. Sci., 2015, 353: 804
[70] Yang Q Q, Liu Y, Li Y X.Modeling and simulation of structural formation of porous aluminum in Gasar solidification[J]. Acta Metall. Sin., 2014, 50: 1403(杨倩倩, 刘源, 李言祥. 定向凝固藕状多孔Al生长过程的模拟仿真[J]. 金属学报, 2014, 50: 1403)
[71] Kim S Y, Park J S, Nakajima H.Fabrication of lotus-type porous aluminum through thermal decomposition method[J]. Metall. Mater. Trans., 2009, 40A: 937
[72] Kumar G S V, Mukherjee M, Garcia-Moreno F, et al. Reduced-pressure foaming of aluminum alloys[J]. Metall. Mater. Trans., 2013, 44A: 419
[73] Shapovalov V I.Prospects of the application of hydrogen as an alloying element[J]. Mater. Sci., 1994, 30: 419
[74] Xiang Y B.Mechanical properties of unidirectionally solidified regular porous magnesium [D]. Beijing: Tsinghua University, 2006(项亦斌. 一维定向凝固规则多孔镁力学性能研究 [D]. 北京: 清华大学, 2006)
[75] Hyun S K, Ikeda T, Nakajima H.Fabrication of lotus-type porous iron and its mechanical properties[J]. Sci. Technol. Adv. Mater., 2004, 5: 201
[76] Simone A E, Gibson L J.Efficient structural components using porous metals[J]. Mater. Sci. Eng., 1997, A229: 55
[77] Hyun S K, Nakajima H.Anisotropic compressive properties of porous copper produced by unidirectional solidification[J]. Mater. Sci. Eng., 2003, A340: 258
[78] Ide T, Tane M, Ikeda T, et al.Compressive properties of lotus-type porous stainless steel[J]. J. Mater. Res., 2006, 21: 185
[79] Yao D, Liu X H, Liu X F, et al.Axial compressive deformation behaviors and constructive relation for lotus-type porous copper[J]. Chin. J. Nonferrous Met., 2008, 18: 1995(姚迪, 刘新华, 刘雪峰等. 藕状多孔铜轴向压缩变形行为与本构关系[J]. 中国有色金属学报, 2008, 18: 1995)
[80] Mukai T, Miyoshi T, Nakano S, et al.Compressive response of a closed-cell aluminum foam at high strain rate[J]. Scr. Mater., 2006, 54: 533
[81] Wang Z H, Ma H W, Zhao L M, et al.Studies on the dynamic compressive properties of open-cell aluminum alloy foams[J]. Scr. Mater., 2006, 54: 83
[82] Tane M, Zhao F, Song Y H, et al.Formation mechanism of a plateau stress region during dynamic compression of porous iron: Interaction between oriented cylindrical pores and deformation twins[J]. Mater. Sci. Eng., 2014, A591: 150
[83] Tane M, Kawashima T, Yamada H, et al.Strain rate dependence of anisotropic compression behavior in porous iron with unidirectional pores[J]. J. Mater. Res., 2010, 25: 1179
[84] Song Y H, Tane M, Nakajima H.Peculiar formation mechanism of a plateau stress region during dynamic compressive deformation of porous carbon steel with oriented cylindrical pores[J]. Acta Mater., 2012, 60: 1149
[85] Song Y H, Tane M, Nakajima H.Appearance of a plateau stress region during dynamic compressive deformation of porous carbon steel with directional pores[J]. Scr. Mater., 2011, 64: 797
[86] Song Y H, Tane M, Nakajima H.Dynamic and quasi-static compression of porous carbon steel S30C and S45C with directional pores[J]. Mater. Sci. Eng., 2012, A534: 504
[87] Li W D, Jia H L, Pu C, et al.Cell wall buckling mediated energy absorption in lotus-type porous copper[J]. J. Mater. Sci. Technol., 2015, 31: 1018
[88] Li W D, Xu K, Li H H, et al.Energy absorption and deformation mechanism of lotus-type porous coppers in perpendicular direction[J]. J. Mater. Sci. Technol., 2017, 33: 1353
[89] Shapovalov V.Porous metals[J]. MRS Bull., 1994, 19: 24
[90] Ogushi T, Chiba H, Nakajima H, et al.Measurement and analysis of effective thermal conductivities of lotus-type porous copper[J]. J. Appl. Phys., 2004, 95: 5843
[91] Chiba H, Ogushi T, Nakajima H, et al.Steady state comparative-longitudinal heat flow method using specimen of different thicknesses for measuring thermal conductivity of lotus-type porous metals[J]. J. Appl. Phys., 2008, 103: 13515
[92] Chiba H, Ogushi T, Nakajima H.Heat transfer capacity of lotus-type porous copper heat sink for air cooling[J]. J. Therm. Sci. Technol., 2010, 5: 222
[93] Chiba H, Ogushi T, Nakajima H, et al.Heat transfer capacity of lotus-type porous copper heat sink[J]. JSME Int. J., 2004, 47B: 516
[94] Chen L T, Zhang H W, Liu Y, et al.Theoretical study on heat transfer performance of directioanlly solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48: 1374(陈刘涛, 张华伟, 刘源等. 定向凝固多孔铜热沉传热性能的理论分析[J]. 金属学报, 2012, 48: 1374)
[95] Chen L T, Zhang H W, Liu Y, et al.Experimental research on heat transfer performance of directionanly solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48: 329(陈刘涛, 张华伟, 刘源等. 定向凝固多孔Cu热沉传热性能的实验研究[J]. 金属学报, 2012, 48: 329)
[96] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electron Device. Lett., 1981, EDL-2: 126
[97] Chen L T.Study on heat transfer performance of directionally solidified porous copper microchannel heat sink [D]. Beijing: Tsinghua University, 2012(陈刘涛. 定向凝固多孔铜微通道热沉传热性能的研究 [D]. 北京: 清华大学, 2012)
[98] Xie Z J, Ikeda T, Okuda Y, et al.Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2004, A386: 390
[99] Xie Z K, Tane M, Hyun S K, et al.Vibration-damping capacity of lotus-type porous magnesium[J]. Mater. Sci. Eng., 2006, A417: 129
[100] Tane M, Hyun S K, Nakajima H.Anisotropic electrical conductivity of lotus-type porous nickel[J]. J. Appl. Phys., 2005, 97: 103701
[101] Gu X N, Zhou W R, Zheng Y F, et al.Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material[J]. Mater. Lett., 2010, 64: 1871
[102] Higuchi Y, Ohashi Y, Nakajima H.Biocompatibility of lotus-type stainless steel and titanium in alveolar bone[J]. Adv. Eng. Mater., 2006, 8: 907
[103] Li Y X, Wu A P.Principle of Materials Processing [M]. Beijing: Tsinghua University Press, 2005: 81(李言祥, 吴爱萍. 材料加工原理 [M]. 北京: 清华大学出版社, 2005: 81)
[104] Wang L.Melt hydrogenation and its influence on the structures and properties of titanium alloys [D]. Harbin: Harbin Institute of Technology, 2010(王亮. 钛合金液态气相置氢及其对组织和性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[105] Sacris E M, Parlee N A D. The diffusion of hydrogen in liquid Ni, Cu, Ag, and Sn[J]. Metall. Trans., 1970, 1: 3377
[106] Sigrist F, Feichtinger H K, Marincek B.Eine neue station?re methode zur bestimmung des diffusionskoeffizienten von gasen in flüssigen metallen und legierungen[J]. Z. Phys. Chem., 1977, 107: 211
[107] Yang Q Q, Liu Y, Li Y X.Hydrogen diffusion coefficient in liquid metals evaluated by solid-gas eutectic unidirectional solidification[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 4030
[108] Li Y X, Liu B C.Initial composition transient during crystal growth[J]. Acta Metall. Sin., 1988, 24: 82(李言祥, 柳百成. 晶体生长的初始成分过渡区[J]. 金属学报, 1988, 24: 82)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[6] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[8] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[9] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[12] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[13] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[15] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
No Suggested Reading articles found!