Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1039-1045    DOI: 10.11900/0412.1961.2013.00835
Current Issue | Archive | Adv Search |
EFFECT OF PROCESSING PARAMETERS ON SOLID-LIQUID INTERFACE OF Nb-Si BASE ALLOY FABRICATED BY ELECTROMAGNETIC COLD CRUCIBLE DIRECTIONAL SOLIDIFICATION
YAN Yuncheng1,2, DING Hongsheng1(), SONG Jinxia2, KANG Yongwang2, CHEN Ruirun1, GUO Jingjie1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

YAN Yuncheng, DING Hongsheng, SONG Jinxia, KANG Yongwang, CHEN Ruirun, GUO Jingjie. EFFECT OF PROCESSING PARAMETERS ON SOLID-LIQUID INTERFACE OF Nb-Si BASE ALLOY FABRICATED BY ELECTROMAGNETIC COLD CRUCIBLE DIRECTIONAL SOLIDIFICATION. Acta Metall Sin, 2014, 50(9): 1039-1045.

Download:  HTML  PDF(1966KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nb-Si base alloys have attracted considerable attentions as the potential high temperature structural materials working in the service temperature range of 1200~1400 ℃ because of their high melting points (>1750 ℃), moderate densities (6.6~7.2 g/cm3) and excellent high temperature strength. However, the mismatching between room temperature fracture toughness and high temperature strength has limited their practical applications. Directional solidification (DS) and alloying have been proved to be the effective methods to overcome this critical issue. The DS processes used to prepare Nb-Si base alloys included Czochralski directional solidification in a copper crucible, electron beam directional solidification, optical floating zone melting, integrally directional solidification and electromagnetic cold crucible directional solidification (ECCDS). The previous studies focused on the effect of process parameters on microstructure and mechanical properties in the steady-state growth region (SSGR). However, the microstructure in the SSGR was controlled by the solid-liquid interface, and the solid-liquid interface was controlled by process parameters. Therefore, the study about the effect of process parameters on solid-liquid interface was very important. In this work, the master alloy with the nominal composition of Nb-22Ti-16Si-3Cr-3Al-2Hf (atomic fraction, %) was prepared by vaccum non-consumable arc-melting first, and then induction skull melting. The DS experiments were performed in the ECCDS device equipped with a square water cooled copper crucible (internal dimension: 26 mm×26 mm×120 mm) and a Ga-In alloy pool. There were three processing parameters in ECCDS including heating power of power supply, withdrawal rate and holding time. The DS ingots were prepared according to the orthogonal test (L9 (33)). Instability degree was defined as the ratio of the height of solid-liquid interface to the width of the DS ingot. The results showed that there were three macroscopic morphologies of solid-liquid interfaces; the increase of holding time, decrease of withdrawal rate and elevation of heating power were conducive to keeping the solid-liquid interface macroscopic morphology planar. With the increase of withdrawal rate, primary dendrite arm spacing (d1) and secondary dendrite arm spacing (d2) decreased gradually; with the increase of heating power, d1 and d2 increased gradually; with the increase of holding time, d1 and d2 increased first and then decreased. The higher withdrawal rate, lower heating power and less holding time were beneficial to refining the d1 and d2.

Key words:  electromagnetic cold crucible directional solidification      instability degree      solid-liquid interface      processing parameter      primary dendrite arm spacing      secondary dendrite arm spacing     
Received:  24 December 2013     
ZTFLH:  TB331  
Fund: Supported by National Natural Science Foundation of China (No.51171053)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00835     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1039

Level Heating power P / kW Withdrawal rate v / (mm·min-1) Holding time t / min
1 45 0.4 3
2 50 0.8 6
3 55 1.4 9
Table 1  Level factor table of orthogonal test L9 (33)
Specimen P v t Di d1 d2
Oex-1 1 1 1 0.143 51.43 13.82
Oex-2 1 2 2 0.231 46.78 13.19
Oex-3 1 3 3 0.152 29.60 6.69
Oex-4 2 1 2 0.070 84.65 18.32
Oex-5 2 2 3 0.066 53.75 13.64
Oex-6 2 3 1 0.291 42.57 7.79
Oex-7 3 1 3 0.108 93.68 24.03
Oex-8 3 2 1 0.129 59.71 16.92
Oex-9 3 3 2 0.099 49.49 14.71
Table 2  Orthogonal test table and visual analysis of the measurement results
Fig.1  OM images of S/L interface (H is the vertical distance from the highest point of the S/L interface to the straight line)

(a) Oex-2 (b) Oex-4 (c) Oex-5

Fig.2  Tendency chart of the instability degree of S/L interface
Level / range P v t
k1 0.175 0.107 0.188
k2 0.142 0.142 0.133
k3 0.112 0.181 0.109
Range 0.063 0.074 0.079
Table 3  Visual analysis of Di
Fig.3  OM image of S/L interfaces of Oex-4 sample
Fig.4  Tendency chart of the primary dendrite arm spacing of primary Nbss
Level / range P v t
u1 42.60 76.59 51.24
u2 60.32 53.41 60.31
u3 67.63 40.55 59.01
Range 25.02 36.03 9.07
Table 4  Visual analysis of d1 of the primary Nbss at S/L interface
Level / range P v t
w1 11.23 18.72 12.84
w2 13.25 14.58 15.41
w3 18.55 9.73 14.79
Range 7.32 8.99 2.56
Table 5  Visual analysis of d2 of the primary Nbss at S/L interface
Fig.5  Tendency chart of the secondary dendrite arm spacing of primary Nbss
Fig.6  Lateral heat transfer schematic of electromagnetic cold crucible directional solidification (1—water-cooled copper crucible, 2—skin layer, 3—skull border determined by heat transfer, 4—molten pool, 5—directional solidification texture. d and d represent the depth of skin layer and the thickness of skull, respectively)
[1] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R, Mendiratta M G, Lewandowski J J. MRS Bull, 2003; 28: 646
[2] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. Metall Mater Trans, 2003; 34A: 2043
[3] Subramanian P, Mendiratta M, Dimiduk D. JOM, 1996; 48: 33
[4] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3801
[5] Mendiratta M G, Lewandowski J J, Dimiduk D M. Metall Trans, 1991; 22: 1573
[6] Li Y L, Ma C L, Zhang H, Miura S. Mater Sci Eng, 2011; A528: 5772
[7] Tian Y X, Guo J T, Cheng G M, Sheng L Y, Zhou L Z, He L L, Ye H Q. Mater Des, 2009; 30: 2274
[8] Sekido N, Kimura Y, Miura S, Wei F G, Mishima Y. J Alloys Compd, 2006; 425: 223
[9] Sha J B, Hirai H, Tabaru T, Kitahara A, Ueno H, Hanada S. Metall Mater Trans, 2003; 34A: 85
[10] Bewlay B P, Jackson M R, Lipsitt H A. J Phase Equilib, 1997; 18: 264
[11] Guan P, Guo X P, Ding X, Zhang J, Gao L, Kusabiraki K. Acta Metall Sin (Engl Lett), 2004; 17: 450
[12] Guo X P, Gao L M. J Aeron Mater, 2006; 26(3): 47
(郭喜平, 高丽梅. 航空材料学报, 2006; 26(3): 47)
[13] Kang Y W. PhD Dissertation, Beijing Institute of Aeronautical Materials, 2008
(康永旺. 北京航空材料研究院博士学位论文, 2008)
[14] Wu M L, Wang Y Y, Li S S, Jiang L W, Han Y F. Int J Mod Phys, 2010; 24B: 2964
[15] Kim W Y, Tanaka H, Kasama A, Hanada S. Intermetallics, 2001; 9: 827
[16] Sekito Y, Miura S, Ohkubo K, Mohri T, Sakaguchi N, Watanabe S, Kimura Y, Mishima Y. Mater Res Soc Symp Proc, 2009; 1128: 38
[17] Guo H S, Guo X P. Scr Mater, 2011; 64: 637
[18] Yao C F, Guo X P, Guo H S. Acta Metall Sin, 2008; 44: 579
(姚成方, 郭喜平, 郭海生. 金属学报, 2008; 44: 579)
[19] He Y S, Guo X P, Guo H S, Sun Z P. Acta Metall Sin, 2009; 45: 1035
(何永胜, 郭喜平, 郭海生, 孙志平. 金属学报, 2009; 45: 1035)
[20] Wang Y, Guo X P. Acta Metall Sin, 2010; 46: 506
(王 勇, 郭喜平. 金属学报, 2010; 46: 506)
[21] Yan Y C, Ding H S, Kang Y W, Song J X. Mater Des, 2014; 55: 450
[22] Yan Y C, Ding H S, Song J X. Proc Eng, 2012; 27: 1033
[23] Nie G, Ding H S, Chen R R, Guo J J, Fu H Z. Mater Des, 2012; 39: 350
[24] Ding H S, Nie G, Chen R R, Guo J J, Fu H Z. Mater Des, 2012; 41: 108
[25] Li Y Y,Hu C R. Experiment Design and Data Processing. 2nd Ed., Beijing: Chemical Industry Press, 2008: 124
(李云雁,胡传荣. 试验设计与数据处理. 第二版, 北京: 化学工业出版社, 2008: 124)
[26] Wang Y L, Guo J J, Fu H Z. J Harbin Inst Technol, 2008; 40: 1808
(王艳丽, 郭景杰, 傅恒志. 哈尔滨工业大学学报, 2008; 40: 1808)
[27] Zhou Y H,Hu Z Q,Jie W Q. Solidification Technology. Beijing: Machinery Industry Press, 1998: 155
(周尧和,胡壮麒,介万齐. 凝固技术. 北京: 机械工业出版社, 1998: 155)
[28] Hu H Q. Metal Solidification Principle. 2nd Ed., Beijing: Machinery Industry Press, 2007: 108
(胡汉起. 金属凝固原理. 第二版, 北京: 机械工业出版社, 2007: 108)
[1] LIU Jian, PENG Qin, XIE Jianxin. Grain Structure and Metallurgical Defects Regulation of Selective Laser Melted René 88DT Superalloy[J]. 金属学报, 2021, 57(2): 191-204.
[2] Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. 金属学报, 2018, 54(5): 766-772.
[3] Qing LI,Zixing WANG,Shuyuan XIE. Research on the Development of Mathematical Model of the Whole Process of Electroslag Remelting and the Process Simulation[J]. 金属学报, 2017, 53(4): 494-504.
[4] Wenying GUO,Xiaoqiang HU,Xiaoping MA,Dianzhong LI. EFFECT OF TiN PRECIPITATES ON SOLIDIFICATION MICROSTRUCTURE OF MEDIUM CARBON Cr-Mo WEAR RESISTANT STEEL[J]. 金属学报, 2016, 52(7): 769-777.
[5] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[6] CHEN Gao, GAO Ziying. EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO2 LASER DEEP PENETRATION WELDING[J]. 金属学报, 2013, 49(2): 181-186.
[7] XU Xiaojing LIN Xin HUANG Weidong WANG Liang. MICROSTRUCTURE AND MECHANICAL PROPERTY OF Ti-80%Ni ALLOY PREPARED BY LASER SOLID FORMING[J]. 金属学报, 2010, 46(9): 1081-1085.
[8] JIANG Liwu LI Shusuo QIU Zicheng HAN Yafang . EFFECTS OF WITHDRAWAL RATE ON MICROSTRUCTURE AND STRESS RUPTURE PROPERTIES OF A Ni3Al–BASED SINGLE CRYSTAL SUPERALLOY IC6SX[J]. 金属学报, 2009, 45(5): 547-552.
[9] HUANG Taiwen LIU Lin ZHANG Weiguo ZHANG Jun FU Hengzhi. INFLUENCE OF WITHDRAWING RATE TRANSITION ON THE PRIMARY DENDRITE ARM SPACING AND MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED SINGLE CRYSTAL SUPERALLOY DD3[J]. 金属学报, 2009, 45(10): 1225-1231.
[10] GU Dongdong SHEN Yifu. MICROSTRUCTURES OF LASER SINTERED MICRON/ NANO-SIZED Cu-W POWDER[J]. 金属学报, 2009, 45(1): 113-118.
[11] XU Hai Wei. research on fine grained dual phase low carbon steel by deformation-enhanced transformation[J]. 金属学报, 2006, 42(10): 1101-1108 .
[12] HE Guo;LI Jianguo;MAO Hiemin;FU Hengzhi(Northwestern Polytechnical University;Hi'an 710072)(Manuscript received 1994-09-13.in revised form 1995-03-13). INFLUENCE OF CRYSTAL ORIENTATION ON THE PRIMARY DENDRITE ARM SPACING OF A SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 1995, 31(7): 309-314.
No Suggested Reading articles found!