Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 917-924    DOI: 10.3724/SP.J.1037.2013.00176
Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL PROPERTIES AND STRENGTHENING MECHANISMS OF A Cu BEARING LOW-CARBON STEEL TREATED BY Q&P PROCESS
YAN Shu1), LIU Xianghua1,2), LIU WJ2), LAN Huifang1), WU Hongyan1)
1) The State Key Laboratory of Rolling & Automation, Northeastern University, Shenyang 110819
2) Research Academy, Northeastern University, Shenyang 110819
Cite this article: 

YAN Shu, LIU Xianghua, LIU WJ, LAN Huifang, WU Hongyan. MICROSTRUCTURE, MECHANICAL PROPERTIES AND STRENGTHENING MECHANISMS OF A Cu BEARING LOW-CARBON STEEL TREATED BY Q&P PROCESS. Acta Metall Sin, 2013, 49(8): 917-924.

Download:  PDF(1074KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A low carbon steel containing Cu addition was treated by Q&P process using a CAS-200 continuous annealing simulator. The microstructure of the steel was characterized by means of SEM, EBSD, XRD and TEM and its mechanical properties were investigated by tensile testing at room temperature. Cu-rich precipitates formed during the Q&P process were observed as spherical particles in martensitic laths and are 9 nm to 20 nm in diameter. According to the Orowan mechanism, those fine particles may have a contribution to the yield strength of the steel about 134 MPa. Also observed are three different morphologies of the retained austenite phase in the test steel, i.e. thin film--like, fine granular and blocky, formed at different locations. The test steel has a good comprehensive mechanical properties, of which the product of tensile strength and elongation, the tensile strength and the total elongation are as high as 21.2 GPa·%, 1326 MPa and 16 %, respectively. The excellent combined properties can be attributed to the effect of transformation induced plasticity (TRIP) caused by the retained austenite.

Key words:  Q&P process      retained austenite      Cu-rich particle      product of tensile strength and elongation     
Received:  04 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00176     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/917

[1] Matas S, Hehemann R F.  Nature, 1960; 187: 685 [2] Hsu T Y, Li X M.  Acta Metall Sin, 1983; 19: A83
(徐祖耀, 李学敏. 金属学报, 1983; 19: A83)
[3] Bhadeshia H K D H.  Bainite in Steels. 2nd Ed, London: Cambridge University Press, 2001: 373
[4] Speer J G, Matlock D K, De Cooman B C, Schroth J G.  Acta Mater, 2003; 51: 2611
[5] Speer J G, Edmonds D V, Rizzo F C, Matlock D K.  Curr Opin Solid State Mater Sci, 2004; 8: 219
[6] Clarke A J, Speer J G, Miller M K, Hackenberg R E, Edmonds D V, Matlock D K, Rizzo F C, Clarke K D, De Moor E.  Acta Mater, 2008; 56: 16
[7] Santofimia M J, Zhao L, Sietsma J.  Metall Mater Trans, 2008; 40A: 46
[8] Liu H P, Lu X W, Jin X J, Dong H, Shi J.  Scr Mater, 2011; 64: 749
[9] De Moor E, Lacroixs S, Clarke A J, Penning J, Speer J G.  Metall Meter Trans, 2008; 39A: 2586
[10] Clarke A J.  PhD Dissertation, Colorado School of Mines, 2006
[11] Tsuchiyama T, Tobata J, Nakada N, Takaki S.  Mater Sci Eng, 2012; A532: 585
[12] Li H Y, Lu X W, Li W J, Jin X J.  Metall Mater Trans, 2010; 41A: 1284
[13] Santofimia M J, Zhao L, Petrov R, Kwakernaak C, Sloof W G, Sietsma J.Acta Mater, 2011; 59: 6059
[14] Edmonds D V, He K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G.Mater Sci Eng, 2006; A438-404: 25
[15] Wang C Y, Shi J, Cao W Q, Dong H.  Acta Metall Sin, 2011; 47: 720
(王存宇, 时捷, 曹文权, 董瀚. 金属学报, 2011; 47: 720)
[16] Hsu T Y.  Mater Sci Forum, 2007; 561: 2283
[17] Thomas G A, Speer J G, Matlock D K.  Metall Mater Trans, 2011; 42A: 3652
[18] Yi H L, Chen P, Hou Z Y, Hong N, Cai H L, Xu Y B, Wu D, Wang G D.Scr Mater, 2013; 68: 370
[19] van Dijk N H, Butt A M, Zhao L, Sietsma J, Offerman S E, Wright J P,van der Zwaag S.  Acta Mater, 2005; 53: 5439
[20] Zhong N, Wang X D, Rong Y H, Wang L J.  Mater Sci Technol, 2006; 22: 751
[21] Takahashi J, Kawakami K, Kobayashi Y.  Mater Sci Eng, 2012; A535: 144
[22] Sen I, Amankwah E, Kumar N S, Fleury E, Oh--ishi K, Hono K, Ramamurty U.Mater Sci Eng, 2011; A528: 4491
[23] Santofimia M J, Zhao L, Siemtsma J.  Metall Mater Trans, 2011; 42A: 3620
[24] Yong Q L.  Second Phases in Structural Steels.Beijing: Metallurgical Industry Press, 2006: 42
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 42)
[25] Kim S A, Johnson W L.  Mater Sci Eng, 2007; A452-453: 633
[26] Olson N J.  PhD Dissertation, Lowa State University, 1970

[1] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[2] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[3] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[4] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[5] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[6] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[7] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[8] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[9] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[10] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[11] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[12] Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS[J]. 金属学报, 2015, 51(5): 527-536.
[13] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[14] ZHOU Wenhao, XIE Zhenjia, GUO Hui, SHANG Chengjia. REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY[J]. 金属学报, 2015, 51(4): 407-416.
[15] JU Biao, WU Huibin, TANG Di, PAN Xuefu. EFFECT OF MICROSTRUCTURE EVOLUTION ON MECHANICAL PROPERTIES OF ULTRA-HIGH STRENGTH WEAR RESISTANCE STEEL[J]. 金属学报, 2014, 50(9): 1055-1062.
No Suggested Reading articles found!