Fe-Ga alloy,magnetostriction,rare earth Ce addition,microstructure," /> Fe-Ga alloy,magnetostriction,rare earth Ce addition,microstructure,"/> Fe-Ga alloy,magnetostriction,rare earth Ce addition,microstructure,"/> 稀土Ce添加对Fe<sub>83</sub>Ga<sub>17</sub>合金微结构和磁致伸缩性能的影响
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 87-91    DOI: 10.3724/SP.J.1037.2012.00498
Current Issue | Archive | Adv Search |
EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY
YAO Zhanquan1,3, ZHAO Zengqi1,2, JIANG Liping2,HAO Hongbo 2, WU Shuangxia 2,ZHANG Guangrui2, YANG Jiandong2
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Huhhot 010051
2. Baotou Research Institute of Rare Earths, Baotou 014030
3. School of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot 010018
Cite this article: 

YAO Zhanquan, ZHAO Zengqi, JIANG Liping,HAO Hongbo, WU Shuangxia,ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY. Acta Metall Sin, 2013, 49(1): 87-91.

Download:  PDF(648KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-Ga alloy, which was a new type of magnetostrictive material with high magnetostriction, low hysteresis, high tensile strength and good machinability, has been widely studied. However, the magnetostrictive properties of the practically prepared Fe-Ga alloys were quite small at present. In order to improve magnetostrictive properties of the Fe-Ga alloy, the Fe83Ga17Cex (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) alloys were prepared by non--consumable vacuum arc melting furnace using high purity elements under a protective argon atmosphere. The crystal structures and surface morphologies of the alloys were intensively studied by X--ray diffraction (XRD) and scanning electron microscopy (SEM) combined with energy—dispersive spectroscopy (EDS), respectively. The magnetostriction coefficients of the alloys were measured by means of the resistance strain method. The results showed that Fe83Ga17 alloy is composed only of a single phase of A2 with bcc structure. However, the Fe83Ga17Cex alloys are composed of the A2 phase and a small amount of CeFe2 secondary phase with MgCu2 structure except the alloy with x=0.2, which is composed only of a single phase of A2. Furthermore, the microstructure of the Fe83Ga17 alloy presents the equiaxial morphology with coarse grains. However, the microstructure of the Fe83Ga17Ce0.8 alloy is a columnar structure with fine grains. Compared with the Fe83Ga17 alloy, the magnetostriction coefficients of the Fe83Ga17Cex alloys are increased significantly except the alloy with x=0.2. The magnetostriction coefficient of the Fe83Ga17Ce0.2 alloy (81×10-6) is slightly smaller than that of the Fe83Ga17 alloy (84×10-6). With the increase of the rare earth Ce content, the magnetostriction coefficients of the Fe83Ga17Cex alloys increase firstly and then decrease. When x=0.8, the maximum magnetostriction coefficient of 356×10-6 is obtained at the magnetic field of 557 kA/m.For the Fe83Ga17Cex alloys except the alloy with x=0.2, the noticeable increase of the magnetostriction coefficients derives from the following reasons: (1) the secondary phase of CeFe2 with MgCu2 structure appears and increases with the increase of the rare earth Ce content in the alloys. (2) the preferred orientation along <100>of A2 phase of the Fe83Ga17Cex alloy is more favorable to the increase of magnetostriction coefficient of Fe-Ga alloy. As for the Fe83Ga17Ce0.2 alloy, the decrease of magnetostriction coefficient is attributed to the fact that the rare earth Ce dissolves in the Fe-Ga alloy and forms the solid solution alloy.

 
Key words:  Fe-Ga alloy')" href="#">     
Received:  23 August 2012     
Service
E-mail this article Fe-Ga alloy|magnetostriction|rare earth Ce addition|microstructure”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract20990.shtml" name="neirong"> Fe-Ga alloy|magnetostriction|rare earth Ce addition|microstructure">
Add to citation manager
E-mail Alert
RSS
Articles by authors
YAO Zhanquan
ZHAO Zengqi
JIANG Liping
HAO Hongbo
WU Shuangxia
ZHANG Guangrui
YANG Jiandong

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00498     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/87

[1] Li C, Liu J H, Wang Z B, Jiang C B. J Magn Magn Mater,2012; 324: 1177


[2] Hatchard T D, George A E, Farrell S P, Steinitz M O, Adams C P,Cormier M, Dunlap R A. J Alloys Compd, 2010; 494: 420

[3] Gong Y, Jiang C B, Xu H B. Acta Metall Sin, 2006; 42: 830

 (龚彦, 蒋成保, 徐惠彬. 金属学报, 2006; 42: 830)

[4] Na S M, Flatau A B. Scr Mater, 2012; 66: 307

[5] Li J H, Gao X X, Xie J X, Yuan C, Zhu J, Yu R B. Intermetallics, 2012; 26: 66

[6] Fang M L, Zhu J, Li J H, Gao X X. Intermetallics, 2011; 19: 1804

[7] Zhou Y, Wang B W, Li S Y, Wang Z H, Huang W M, Cao S Y, Huang W P. J Magn Magn Mater, 2010; 322: 2104

[8] Reddy K S M, Estrine E C, Lim D H, Smyrl W H, Stadler B J H. Electrochem Commun, 2012; 18: 127

[9] Bormio--Nunes C, Turtelli R S, Mueller H, Grossinger R,Sassik H, Tirelli M A. J Magn Magn Mater, 2005; 290--291: 820

[10] Hu Y, Ding Y T, Zhang Y L, Wang G B, Zhou Z G. Trans Nonferrous Met Soc Chia, 2012; 22: 2146

[11] Zhang J J, Ma T Y, Yan M. Physica, 2010; 405B: 3129

[12] Gaudet J M, Hatchard T D, Farrell S P, Dunlap R A. J Magn Magn Mater,2008; 320: 821

[13] Mellors N J, Zhao X, Simmons L M, Quinn C J, Kilcoyne S H.

 J Magn Magn Mater, 2012; 324: 3817

[14] Sun L, Zhang M C, Gao X X, Qiao Y, Zhu J. J Alloys Compd,2008; 463: 6

[15] Li J H, Gao X X, Zhu J, Li J, Zhang M C. J Univ Sci Technol Beijing, 2009; 31: 1281

 (李纪恒, 高学绪, 朱洁, 李洁, 张茂才. 北京科技大学学报, 2009; 31: 1281)

[16] Jiang L P, Zhang G R, Yang J D, Hao H B, Wu S X, Zhao Z Q. J Rare Earths, 2010; 28: 409

[17] Yu Q G, Jiang L P, Zhang G R, Hao H B, Wu S X, Zhao Z Q. Chin Rare Earths, 2010; 31(4): 21

 (于全功, 江丽萍, 张光睿, 郝宏波, 吴双霞, 赵增祺. 稀土, 2010; 31(4): 21)

[18] Kirchmayr H R, Poldy C A. J Magn Magn Mater, 1978; 8: 1

[19] Wang B W, Cao S Y, Huang W M. Magnetostrictive Material and Devices.Beijing: Metallurgical Industry Press, 2008: 14

 (王博文, 曹淑英, 黄文美. 磁致伸缩材料与器件. 北京:冶金工业出版社, 2008: 14)

[20] Gu M, Zhou J K, Li J G. J Alloys Compd, 2007; 441: 81

[21] Basumatary H, Palit M, Chelvane J A, Pandian S, Raja M M,Chandrasekaran V. Scr Mater, 2008; 59: 878

[22] Xu S F, Zhang H P, Wang W Q, Guo S H, Zhu W, Zhang Y H, Wang X L,Zhao D L, Chen J L, Wu G H. J Alloys Compd, 2009; 469: 203

[23] Zhu J, Peng F L, Fang M L, Li J H, Gao X X, Yu R H. Chin Phys,2011; 20B: 057504

[24] Cui Z Q. Metallography and Heat Treatment. Beijing: MachineryIndustry Press, 2000: 52

 (崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 2000: 52)

[25] Li Y X, Liu H Y, Li S T, Meng F B, Lu Z M, Qu J P, Chen J L, Wu G H,Tang C. J Alloys Compd, 2006; 408--412: 127

[26] Callen E, ed. Gardner F S, Proc Metallic Magnetoacoustic Materiala Workshop, Boston, MA, 1969: 75

[27] Koon N C, Schindler A I, Carter F L. Phys Lett, 1971; 37A: 413

[28] Lograsso T A, Ross A R, Schlagel D L, Clark A E, Wun--Fogle M. J Alloys Compd, 2003; 350: 95

[29] Takahashi T, Hashimoto K, Okazaki T, Furuya Y, Kubota T, Saito C. Scr Mater, 2009; 60: 847

 
[1] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[2] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[3] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] ZHU Li, YAO Meiyi, SUN Guocheng,CHEN Wenjue, ZHANG Jinlong,ZHOU Bangxin. EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-1Nb ALLOY IN DEIONIZED WATER AT 360 ℃ AND 18.6 MPa[J]. 金属学报, 2013, 49(1): 51-57.
[5] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
[6] CHEN Libiao ZHU Xiaoxi LI Chuan LIU Jinghua JIANG Chengbao XU Huibin. <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. 金属学报, 2011, 47(2): 169-172.
[7] CUI Yue JIANG Chengbao XU Huibin. INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY[J]. 金属学报, 2011, 47(2): 214-218.
[8] ZHANG Changsheng MA Tianyu YAN Mi PEI Yongmao GAO Xu. MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY[J]. 金属学报, 2009, 45(6): 749-753.
[9] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[10] JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. 金属学报, 2009, 45(12): 1473-1478.
[11] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[12] LIN Jian; Haiyan ZHAO; Zhipeng CAI; Yongping LEI. STUDY ON THE RELATIONSHIP BETWEEN MAGNETIC FIELD AND RESIDUAL STRESS IN STEEL MATERIALS[J]. 金属学报, 2008, 44(4): 451-456 .
[13] ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin. Melt quenched Fe81Ga19 magnetostriction alloy[J]. 金属学报, 2008, 44(3): 361-364 .
[14] Xu Yun-Wei; MA Tian-Yu; Mi YAN. MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS[J]. 金属学报, 2008, 44(10): 1235-1237 .
[15] BAI Xia-Bing; MA Tian-Yu. MAGNETOMECHANICAL COUPLING FACTOR (k33) OF Tb0.36Dy0.64(Fe0.85Co0.15)2 <110> ORIENTED CRYSTALS[J]. 金属学报, 2008, 44(10): 1231-1234 .
No Suggested Reading articles found!