Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 187-193    DOI: 10.3724/SP.J.1037.2011.00558
论文 Current Issue | Archive | Adv Search |
PARTITION OF Hf AMONG THE PHASES AND ITS EFFECTS ON PRECIPITATES IN PM Ni–BASED SUPERALLOY FGH97
ZHANG Yiwen 1,2, WANG Fuming 1, HU Benfu 3
1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2. High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081
3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHANG Yiwen WANG Fuming HU Benfu. PARTITION OF Hf AMONG THE PHASES AND ITS EFFECTS ON PRECIPITATES IN PM Ni–BASED SUPERALLOY FGH97. Acta Metall Sin, 2012, 48(2): 187-193.

Download:  PDF(943KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The partition behavior of hafnium among different phases in FGH97 PM (powder metallurgy) superalloy and its effects on the precipitation behaviors of MC carbide and γ' phase were studied by means of 3DAP, SEM, TEM and physiochemical phase analysis. The results showed that element Hf mainly exists in γ' phase and MC carbide, which makes γ' composition transform to (Ni, Co)3(Al, Ti, Nb, Hf), also makes MC transform to (Nb, Ti, Hf)C. With Hf addition increasing, the proportion of Hf in γ' maintains constant, but in MC carbide increases and in γ decreases, which means that partition ratio (R1) between γ' phase and MC carbide is decreased, while partition ratio (R2) between γ' phase and γ matrix is increased, the average partition ratio between γ' phase and MC carbide is about 1 :0.1, and the average partition ratio between γ' phase and γ matrix is about 1:0.05. Hf is helpful to the precipitations of γ' phase and MC carbide, the morphology and size of γ' phase are influenced more by Hf than these of MC carbide.
Key words:  PM superalloy      FGH97      Hafnium      γ' phase      MC carbide      partition     
Received:  02 September 2011     
ZTFLH: 

TG 113.12

 
Fund: 

Supported by National Basic Research Program of China (No.2010CB631204)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00558     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/187

[1] Duhl D N, Sulivan C P. JOM, 1971; 23: 38

[2] Kotval P S, Venables J D, Calder R W. Metall Trans, 1972; 3: 453

[3] Wang L B, Chen R Z, Wang Y P. Aero Mater, 1982; 2: 1

(王罗宝, 陈荣章, 王玉屏. 航空材料, 1982; 2: 1)

[4] Zheng Y R, Cai Y L Ruan Z C, Ma S W. J Aero Mater, 2006; 26: 25

(郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26: 25)

[5] Belov A F, Anoshkin N F, Fatkullin O S. Heat Resistant Steel and Nickel Base High Temperature Alloy. Moscow: Science Press, 1984: 31

[6] Radavich J, Carneiro T, Furrer D. In: Reed R C, Green K A, Caron P eds., Superalloys 2008. Pennsylvania: TMS, 2008: 63

[7] Hardy M C, Zirbel B, Shen G. In: Green K A, Pollock T M, Haradra H eds., Superalloys 2004. Pennsylvania: TMS, 2004: 83

[8] Zhen B L, Zhang S J. Central Iron Steel Res Inst Technol Bull, 1981; 1(1): 65

(甄宝林, 张绍津. 钢铁研究总院学报, 1981; 1(1): 65)

[9] Maslekov S B, Burova N N, Makulov O V. Met Sci Heat Treat, 1980; 22(4): 283

[10] Zimina L N, Burova N N, Makushok O V. Met Sci Heat Treat, 1986; 28(2): 130

[11] Amouyal Y, Seidman D N. Acta Mater, 2011; 59: 3321

[12] Miner R V. Metall Trans, 1977; 8A: 259

[13] Flageolet B, Villechaise P, Jouiad M. In: Green K A, Pollock T M, Haradra H eds., Superalloys 2004. Pennsylvania: TMS, 2004: 371

[14] Starink M J, Reed P A. Mater Sci Eng, 2008; A491: 279

[15] Department of chemical analysis, Central Iron and Steel Research Institute. New Metall Mater, 1977; (5): 60

(钢铁研究总院化学分析室. 新金属材料, 1977; (5): 60)

[16] Markiv V Y, Burnashova V V. IZV Akad Nauk SSSR Met, 1969; (6): 113

[17] Samsonov G V, Vinickji I M. Refractory Compound. 2nd Ed., Moscow: Metallurgy Industry Press, 1976: 150

[18] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1984; 67: 247

[19] Ardell A J. Acta Metall, 1968; 16: 511

[20] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. J Shandong Univ Sci Technol (Nat Sci), 2009; 28: 51

(夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 山东科技大学学报(自然科学版), 2009; 28: 51)
[1] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[2] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[3] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[4] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[5] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[6] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[7] TIAN Tian, HAO Zhibo, JIA Chonglin, GE Changchun. Microstructure and Properties of a New Third Generation Powder Metallurgy Superalloy FGH100L[J]. 金属学报, 2019, 55(10): 1260-1272.
[8] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[9] Likui NING,Jian TONG,Enze LIU,Zheng TAN,Huisi JI,Zhi ZHENG. Effect of Ru on the Solidification Microstructure of a Ni-Based Single Crystal Superalloy with High Cr Content[J]. 金属学报, 2017, 53(4): 423-432.
[10] Liansheng CHEN, Yue LI, Mingshan ZHANG, Yaqiang TIAN, Xiaoping ZHENG, Yong XU, Shihong ZHANG. Effect of Intercritical Dislocation Multiplication to Mn Partitioning and Microstructure Evolution of Bainite in Low Carbon Steel[J]. 金属学报, 2017, 53(11): 1418-1426.
[11] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[12] Yonghua RONG,Nailu CHEN. The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon[J]. 金属学报, 2017, 53(1): 1-9.
[13] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[14] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[15] Haifeng WANG,Haijun SU,Jun ZHANG,Taiwen HUANG,Lin LIU,Hengzhi FU. INFLUENCE OF MELT SUPERHEATING TREATMENT TEMPERATURE ON SOLUTE DISTRIBUTION BEHAVIOR OF A NEW Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2016, 52(4): 419-425.
No Suggested Reading articles found!