|
|
PHASE EQUILIBRIUM IN THE LOW-Ca SIDE OF Mg-Zn-Ca SYSTEM AT 400 ℃ |
LI Hongxiao, REN Yuping, MA Qianqian, JIANG Min, QIN Gaowu |
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 |
|
Cite this article:
LI Hongxiao REN Yuping MA Qianqian JIANG Min QIN Gaowu. PHASE EQUILIBRIUM IN THE LOW-Ca SIDE OF Mg-Zn-Ca SYSTEM AT 400 ℃. Acta Metall Sin, 2012, 48(1): 70-75.
|
Abstract Zn addition to the magnesium alloys could result in the age-hardening, and the age-hardening response of Mg-Zn alloys could be further enhanced by the ternary addition of Ca. In order to better understand the mechanism of the Mg-Zn-Ca base alloy design, the solubility of Mg-based< solid solution and relative phase equilibrium at 400 ℃ in low-Ca side of the Mg-Zn-Ca system have been investigated by SEM, EPMA, XRD and DSC. It has been shown that T1 and T2 are still main ternary compounds in the Mg-rich corner at 400 ℃ with the addition of Ca to Mg-Zn system, but only T1 phase could be in equilibrium with the Mg-based solid solution, and the two-phase field of α-Mg+T1 becomes narrow. The liquid phase with the Ca content less than 8.4\% (atomic fraction) exists in the low-Ca side at 400 ℃, which could be in equilibrium with α-Mg. But liquid phase could not exist in the Mg-Zn-Ca α-Mg+Mg2Ca+T1, α-Mg+T1+Liq, Liq+T1+T2 and Liq+T2+Mg2Zn3 in the Mg-Zn-Ca system, respectively.
|
Received: 26 July 2011
|
|
Fund: Supported by “125” National Key Technology Research and Development Program (No.2011BAE22B01-5), Key Project of National Natural Science Foundation of China (No.50731002) and Natural Science Foundation of Liaoning Province (No.20082030) |
[1] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L. Binary Alloy Phase Diagrams. 2nd Ed., Plus Updates, CD–ROM, Materials Park, Ohio: ASM International, 1996[2] Maeng D Y, Kim T S, Lee J H, Hong S J, Seo S K, Chun B S. Scr Mater, 2000; 43: 385[3] Hort N, Huang Y D, Kainer K U. Adv Eng Mater, 2006; 8: 235[4] Gao X, Nie J F. Scr Mater, 2007; 56: 645[5] Gao X, Nie J F. Scr Mater, 2007; 57: 655[6] Wang X L, Li C R, Guo C P, Du Z M, He W. Acta Metall Sin, 2010; 46: 575(王晓亮, 李长荣, 郭翠萍, 杜振民, 何维. 金属学报, 2010; 46: 575)[7] Nie J F, Muddle B C. Scr Mater, 1997; 37: 1475[8] Bettles C J, Gibson M A, Venkatesan K. Scr Mater, 2004; 51: 193[9] Oh J C, Ohkubo T, Mukai T, Hono K. Scr Mater, 2005; 53: 675[10] Ortega Y, Monge M A, Pareja R. J Alloys Compd, 2008; 463: 62[11] Geng L, Zhang B P, Li A B, Dong C C. Mater Lett, 2009; 63: 557[12] Oh–ishi K, Watanabe R, Mendis C L, Hono K. Mater Sci Eng, 2009; A526: 177[13] Li H X, Ma Q Q, Ren Y P, Jiang M, Qin GW. Acta Metall Sin, 2011; 47: 385(李洪晓, 马倩倩, 任玉平, 蒋敏, 秦高梧. 金属学报, 2011; 47: 385)[14] Zhang Y N, Kevorkov D, Li J, Essadiqi E, Medraj M. Intermetallics, 2010; 18: 2404[15] Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy Phase Diagrams. CD–ROM, Materials Park, Ohio: ASM International, 1997[16] Li H X, Ren Y P, Ma Q Q, Jiang M, Qin G W. Trans Nonferrous Met Soc China, 2011; 21: 2147[17] Zhang Y N, Kevorkov D, Bridier F, Medraj M. Sci Technol Adv Mater, 2011; 12: 025003[18] Brubaker C O, Liu Z K. J Alloys Compd, 2004; 370: 114[19] Wasiur–Rahman S, Medraj M. Intermetallics, 2009; 17: 847[20] Levi G, Avraham S, Zilberov A, Bamberger M. Acta Mater, 2006; 54: 523[21] Sun Y, Zhang B P, Wang Y, Geng L, Jiao X H. Mater Des, 2012; 34: 58[22] Xu Z G, Smith C, Chen S, Sankar J. Mater Sci Eng, 2011; B176: 1660[23] Farahany S, Bakhsheshi–Rad H R, Idris M H, Kadir M R A, Lotfabadi A F, Ourdjini A. Thermochim Acta, 2012; 527: 180[24] Du H, Wei Z J, Liu X W, Zhang E L. Mater Chem Phys, 2011; 125: 568[25] Larionova T V, Park W W, You B S. Scr Mater, 2001; 45: 7[26] Jardim P M, Solorzano G, Vander Sande J B. Mater Sci Eng, 2004; A381: 196 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|