Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 70-75    DOI: 10.3724/SP.J.1037.2011.00486
论文 Current Issue | Archive | Adv Search |
PHASE EQUILIBRIUM IN THE LOW-Ca SIDE OF Mg-Zn-Ca SYSTEM AT 400 ℃
LI Hongxiao, REN Yuping, MA Qianqian, JIANG Min, QIN Gaowu
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

LI Hongxiao REN Yuping MA Qianqian JIANG Min QIN Gaowu. PHASE EQUILIBRIUM IN THE LOW-Ca SIDE OF Mg-Zn-Ca SYSTEM AT 400 ℃. Acta Metall Sin, 2012, 48(1): 70-75.

Download:  PDF(2873KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Zn addition to the magnesium alloys could result in the age-hardening, and the age-hardening response of Mg-Zn alloys could be further enhanced by the ternary addition of Ca. In order to better understand the mechanism of the Mg-Zn-Ca base alloy design, the solubility of Mg-based< solid solution and relative phase equilibrium at 400 ℃ in low-Ca side of the Mg-Zn-Ca system have been investigated by SEM, EPMA, XRD and DSC. It has been shown that T1 and T2 are still main ternary compounds in the Mg-rich corner at 400 ℃ with the addition of Ca to Mg-Zn system, but only T1 phase could be in equilibrium with the Mg-based solid solution, and the two-phase field of α-Mg+T1 becomes narrow. The liquid phase with the Ca content less than 8.4\% (atomic fraction) exists in the low-Ca side at 400 ℃, which could be in equilibrium with α-Mg. But liquid phase could not exist in the Mg-Zn-Ca α-Mg+Mg2Ca+T1α-Mg+T1+Liq, Liq+T1+T2 and Liq+T2+Mg2Zn3 in the Mg-Zn-Ca system, respectively.
Key words:  Mg-Zn-Ca system      liquid phase      compound      phase equilibrium     
Received:  26 July 2011     
ZTFLH: 

TG111

 
Fund: 

Supported by “125” National Key Technology Research and Development Program (No.2011BAE22B01-5), Key Project of National Natural Science Foundation of China (No.50731002) and Natural Science Foundation of Liaoning Province (No.20082030)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00486     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/70

[1] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L. Binary Alloy Phase Diagrams. 2nd Ed., Plus Updates, CD–ROM, Materials Park, Ohio: ASM International, 1996

[2] Maeng D Y, Kim T S, Lee J H, Hong S J, Seo S K, Chun B S. Scr Mater, 2000; 43: 385

[3] Hort N, Huang Y D, Kainer K U. Adv Eng Mater, 2006; 8: 235

[4] Gao X, Nie J F. Scr Mater, 2007; 56: 645

[5] Gao X, Nie J F. Scr Mater, 2007; 57: 655

[6] Wang X L, Li C R, Guo C P, Du Z M, He W. Acta Metall Sin, 2010; 46: 575

(王晓亮, 李长荣, 郭翠萍, 杜振民, 何维. 金属学报, 2010; 46: 575)

[7] Nie J F, Muddle B C. Scr Mater, 1997; 37: 1475

[8] Bettles C J, Gibson M A, Venkatesan K. Scr Mater, 2004; 51: 193

[9] Oh J C, Ohkubo T, Mukai T, Hono K. Scr Mater, 2005; 53: 675

[10] Ortega Y, Monge M A, Pareja R. J Alloys Compd, 2008; 463: 62

[11] Geng L, Zhang B P, Li A B, Dong C C. Mater Lett, 2009; 63: 557

[12] Oh–ishi K, Watanabe R, Mendis C L, Hono K. Mater Sci Eng, 2009; A526: 177

[13] Li H X, Ma Q Q, Ren Y P, Jiang M, Qin GW. Acta Metall Sin, 2011; 47: 385

(李洪晓, 马倩倩, 任玉平, 蒋敏, 秦高梧. 金属学报, 2011; 47: 385)

[14] Zhang Y N, Kevorkov D, Li J, Essadiqi E, Medraj M. Intermetallics, 2010; 18: 2404

[15] Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy Phase Diagrams. CD–ROM, Materials Park, Ohio: ASM International, 1997

[16] Li H X, Ren Y P, Ma Q Q, Jiang M, Qin G W. Trans Nonferrous Met Soc China, 2011; 21: 2147

[17] Zhang Y N, Kevorkov D, Bridier F, Medraj M. Sci Technol Adv Mater, 2011; 12: 025003

[18] Brubaker C O, Liu Z K. J Alloys Compd, 2004; 370: 114

[19] Wasiur–Rahman S, Medraj M. Intermetallics, 2009; 17: 847

[20] Levi G, Avraham S, Zilberov A, Bamberger M. Acta Mater, 2006; 54: 523

[21] Sun Y, Zhang B P, Wang Y, Geng L, Jiao X H. Mater Des, 2012; 34: 58

[22] Xu Z G, Smith C, Chen S, Sankar J. Mater Sci Eng, 2011; B176: 1660

[23] Farahany S, Bakhsheshi–Rad H R, Idris M H, Kadir M R A, Lotfabadi A F, Ourdjini A. Thermochim Acta, 2012; 527: 180

[24] Du H, Wei Z J, Liu X W, Zhang E L. Mater Chem Phys, 2011; 125: 568

[25] Larionova T V, Park W W, You B S. Scr Mater, 2001; 45: 7

[26] Jardim P M, Solorzano G, Vander Sande J B. Mater Sci Eng, 2004; A381: 196
[1] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[2] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[4] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[5] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[6] Bin CHEN,Jie HE,Xiaojun SUN,Jiuzhou ZHAO,Hongxiang JIANG,Lili ZHANG,Hongri HAO. Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards[J]. 金属学报, 2019, 55(6): 751-761.
[7] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[8] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[9] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[10] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[12] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[13] Zhangzhi SHI, Xuefeng LIU. Double Extension Twin and Its Related CompoundTwin Structures in Mg[J]. 金属学报, 2018, 54(12): 1715-1724.
[14] Yinghua LIN, Ying YUAN, Liang WANG, Yong HU, Qunli ZHANG, Jianhua YAO. Effect of Electric-Magnetic Compound Field on the Microstructure and Crack in Solidified Ni60 Alloy[J]. 金属学报, 2018, 54(10): 1442-1450.
[15] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
No Suggested Reading articles found!