Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 951-958    DOI: 10.3724/SP.J.1037.2010.00102
论文 Current Issue | Archive | Adv Search |
EFFECT OF APPLIED POTENTIAL ON SCC OF X80 PIPELINE STEEL AND ITS WELD JOINT IN KU’ERLE SOIL SIMULATED SOLUTION
CHEN Xu, WU Ming, HE Chuan, XIAO Jun
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001
Cite this article: 

CHEN Xu WU Ming HE Chuan XIAO Jun. EFFECT OF APPLIED POTENTIAL ON SCC OF X80 PIPELINE STEEL AND ITS WELD JOINT IN KU’ERLE SOIL SIMULATED SOLUTION. Acta Metall Sin, 2010, 46(8): 951-958.

Download:  PDF(5627KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Potentiodynamic polarization technique and slow strain rate testing (SSRT) were employed to study the stress corrosion cracking (SCC) behavior of a welded X80 pipeline steel in Ku’erle soil simulated solution. Fracture surfaces were observed by SEM under different applied potential conditions. The results show that the polarization curves of the base metal and weld joint represent the typical characteristics of active dissolution. It is found that cracks are generally initiated at corrosion pits and inclusions under anode polarization and open circuit potential. The crack generation mechanism of X80 pipeline base steel and weld metal are attributed to the dissolution at anode. When the applied potential is −900 mV (vs SCE), the base metal exhibites lower SCC sensitivity due to cathodic protection while under the same condition welded joins higher SCC sensitivity. Both the base metal and weld joins exhibite higher SCC sensitivity under −1200 mV (vs SCE) polarization potential and their cracking generation mechanism is hydrogen induced cracking (HIC) due to the synergistic action of stress and hydrognCommonly the weld joint is more sensitive to SCC than the base etal under the same applid potential, and fractures are usually presented in heat affected zone (HAZ) and this is attributed to metallurgical phase transformation and residual stress enerated during welding process.

Key words:  X80 pipeline steel      weld joint      soil simulated solution      applied potential      stress corrosion cracking     
Received:  01 March 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50771053)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00102     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/951

[1] Li J, Elboujdaini M, Gao M, Revie R W. Mater. Sci. Eng, A, 2008, 486: 496 [2] Liu Z Y, Li X G, Zhang Y R, Du C W. Acta Metall Sin (English Letters), 2009, 22: 58 [3] Li M C, Cheng Y F. Electrochimica Acta, 2007, 52: 8111 [4] Fazzini P G, Otegui J L. International Journal of Pressure Vessels and Piping, 2007, 84: 739 [5] Liu Z Y, Li X G, Du C W, Cheng Y F. Corros. Sci., 2009, 51: 2863 [6] Gamboa E, Linton V, Law M. Int. J. Fatigue, 2008, 30: 850 [7] Wang J Q, Atrens A. Corros. Sci., 2003, 45: 2199 [8] Krist K., Leewis L., Willmoff M. Pipeline & Gas Journal, 1998, 225: 49 [9] Parkins R N, Zhou S. Corr. Sci, 1997, 39: 159 [10] Parkins R N, Zhou S. Corr. Sci, 1997, 39: 175 [11] Danielson Mike J, Jones Russell H, Krist Kevin. CORROSION/2000, NACE International, Houston, TX, 2000, Paper No.359 [12] Charles E A, Parkins R N. Corrosion, 1995, 51: 518 [13] Pikey A K, Lambert S B, Plumtree A. Corrosion, 1995, 51: 91 [14 ]Wang J Q, Atrens A, Cousens D R, et al. Journal of Materials Science, 1999, 34:1711 [15] Mao X, Liu X, Revie R W. Corrosion, 1994, 50: 651 [16] :Cao C N. Corrosion of Metals in Nature Environment in China. Beijing: Chemical Industry Press, 2004: 286 (曹楚南. 中国材料的自然环境腐蚀. 北京: 化学工业出版社, 2004: 286 ) [17] Van Boven G, Chen W, Rogge R. Acta Mater, 2007, 55: 29 [18] Chu R, Chen W, Wang S H, et al. Corrosion, 2004, 60: 275 [19] Davies D H, Burstein G T. Corrosion, 1980, 36: 416 [20] Li M C, Cheng Y F. Electrochimica Acta, 2008, 53: 2831 [21] Zhang T ,Sun X L ,Chen J S ,et al. Pipeline Technique and Equipment , 2004, 2:33 (张涛,孙新岭,陈居术,等.氢在高强度管道钢应力腐蚀中的作用[J].管道技术与设备,2004, 2:33) [22] Zhang G A, Cheng Y F. Electrochimica Acta, 2009, 55: 316 [23] Zhang G A, Cheng Y F. Corr. Sci, 2009, 51: 1714
[1] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[3] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[4] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[5] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[6] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[7] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[8] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[9] Hongliang MING,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN,Mingxing SU. Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. 金属学报, 2017, 53(1): 57-69.
[10] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[11] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[12] Zilong ZHANG, Shuang XIA, Wei CAO, Hui LI, Bangxin ZHOU, Qin BAI. EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL[J]. 金属学报, 2016, 52(3): 313-319.
[13] Hongchi MA, Cuiwei DU, Zhiyong LIU, Wenkui HAO, Xiaogang LI, Chao LIU. STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE[J]. 金属学报, 2016, 52(3): 331-340.
[14] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
[15] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
No Suggested Reading articles found!