|
|
FIRST-PRINCIPLES INVESTIGATIONS OF LATTICE PARAMETERS, BULK MODULI AND PHASE STABILITIES OF Ti1-xVx AND Ti1-xNbx ALLOYS |
ZHAO Yufei1;2; FU Yuechun1; HU Qingmiao2; YANG Rui2 |
1) Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; Ministry of Education; Guangxi University; Nanning 530004
2) Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016 |
|
Cite this article:
ZHAO Yufei FU Yuechun HU Qingmiao YANG Rui. FIRST-PRINCIPLES INVESTIGATIONS OF LATTICE PARAMETERS, BULK MODULI AND PHASE STABILITIES OF Ti1-xVx AND Ti1-xNbx ALLOYS. Acta Metall Sin, 2009, 45(9): 1042-1048.
|
Abstract Although Ti-V and Ti-Nb binary systems are subjected to many investigations, there remain some issues open for discussion, among which are the lattice parameter misfit and phase boundary between the non-equilibrium ω and β phases. On the other hand, the experimental elastic moduli of the non-equilibrium phases are rarely reported due to the difficulty of the measurement. In this paper, the lattice parameters, bulk moduli and phase stabilities of α(α'), ω, and β phases of binary Ti-V(Nb) alloys are investigated by the use of first-principles exact Muffin-Tin orbital method in combination with coherent potential approximation. It is shown that, with the increase in the V content, the lattice parameter aα of the α(α') phase decreases, whereas cα/aα slightly increases; aω and cω/aω of the ω phase and aβ of the $\beta$ phase decrease. For Ti-Nb alloy, with increasing Nb content, aα keeps almost unchanged whereas cα/aα increases; aω increases and cω/aω deceases; aβ does not change significantly. The lattice parameter misfit between the ω and β phases increases with increasing V or Nb content. Both V and Nb harden the bulk modulus of Ti and improve the phase stability of the β phase relative to the α(α') and ω phases. The theoretical predictions are compared in detail with the available experimental data.
|
Received: 09 March 2009
|
|
Fund: Supported by National Basic Research Program of China (No.2006CB605104) and National Natural Science Foundation of China (No.50631030) |
[1] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim Germany: Wiley VCH, 2003: 1
[2] Collings E W. The Physical Metallurgy of Titanium Alloys. Metals Park, OH: American Society for Metals, 1984: 75
[3] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R, Acta Biomater, 2007; 3: 277
[4] Sikka S K, Vohra Y K, Chidambaram R. Solid State Comm, 1982; 42: 205
[5] McCabe K K, Sass SL. Philos Mag, 1971; 23: 957
[6] Hanada S, Izumi O. Metall Trans, 1986; 17A: 1409
[7] Aurelio G, Guillermet A F, Cuello G J, Campo J. Metall Mater Trans, 2002; 33A: 1307
[8] Dobromyslov A V, Elkin V A. Scr Mater, 2001; 44: 905
[9] Collings E W. Phys Rev, 1974; 9B: 3989
[10] Hu Q M, Li S J, Hao Y L, Yang R, Johansson B, Vitos L. Appl Phys Lett, 2008; 93: 121902
[11] Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge, UK: Cambridge University Press, 2005: 119
[12] Vitos L. The EMTO Method and Applications in Computational Quantum Mechanics for Materials Engineers. London: Springer–Verlag, 2007: 1
[13] Vitos L. Phys Rev, 2001; 64B: 014107
[14] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[15] Soven P. Phys Rev, 1967; 156: 809
[16] Gy¨orffy B L. Phys Rev, 1972; 5B: 2382
[17] Vitos L, Abrikosov I A, Johansson B. Phys Rev Lett, 2001; 87: 156401
[18] Hu Q M, K´adas K, Hogmark S, Yang R, Johansson B, Vitos L. Appl Phys Lett, 2007; 91: 12918
[19] Hu Q M, Yang R, Lu J M, Wang L, Johansson B, Vitos L. Phys Rev, 2007; 76B: 224201
[20] Lu J M, Hu Q M, Yang R. Acta Mater, 2007; 56: 4913
[21] Kittel C. Introduction to Solid State Physics. New York: John Wiley and Sons, 1971: 96
[22] Leibovitch C H, Rabinkin A, Talianker M. Metall Trans, 1981; 12A: 1513
[23] Ming L C, Manghnani M H, Katahara R W. Acta Metall, 1981; 29: 479
[24] Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K, Saito T. Phys Rev, 2004; 70B: 174113
[25] Sun J, Yao Q, Xing H, Guo W Y. J Phys: Condens Matter, 2007; 19: 486215
[26] Hariharan Y, Janawadkar M P, Radhakrishnan R S, Terrance A L E, Dixit G A, Raghunathan V S. Pramana, 1986; 26: 513
[27] Kim H Y, Ikehara Y, Kim J I, Hosoda H, Miyazaki S. Acta Mater, 2006; 54: 2419
[28] Katahara KW, Manghnani M H, Fisher E S. J Phys, 1979; 9F: 773
[29] Grimall G. Phys Scr, 1976; 13: 59
[30] S¨oderlind P, Johansson B. Thermochim Acta, 1993; 218: 145
[31] Fisher E S, Dever D. Acta Mater, 1970; 18: 265
[32] Balcerzak A T, Sass S L. Met Mater Trans, 1972; 3B: 1073
[33] Ahuja R, Wills J M, Johansson B, Eriksson O. Phys Rev, 1993; 48B: 16269
[34] Verma A K, PModak P, Rao R S, Godwal B K, Jeanloz R. Phys Rev, 2007; 75B: 014109
[35] Kutepov A L, Kutepova S G. Phys Rev, 2003; 67B: 132102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|