Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 749-753    DOI:
论文 Current Issue | Archive | Adv Search |
MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY
ZHANG Changsheng1; MA Tianyu1; YAN Mi1;PEI Yongmao2;GAO Xu3
1.Laboratory of Silicon Materials; Department of Materials Science and Engineering;Zhejiang University; Hangzhou 310027
2.School of Science; Beijing Institute of Technology; Beijing 100081
3.Department of Engineering Mechanics; Tsinghua University; Beijing 100084
Cite this article: 

ZHANG Changsheng MA Tianyu YAN Mi PEI Yongmao GAO Xu. MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY. Acta Metall Sin, 2009, 45(6): 749-753.

Download:  PDF(1082KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During the mechanical loading and unloading process, Tb--Dy--Fe giant magnetostrictive materials can dissipate a mass of elastic energy due to the irreversible movements of non--180° domain walls, which is of interest to be applied in passive damping control systems. The magnetomechanical damping capacity of Tb--Dy--Fe compound is strongly sensitive to the stress magnitude as well as the external magnetic fields. As a new member of the Tb--Dy--Fe family, quaternary Tb0.36Dy0.64(Fe0.85Co0.15)2compound has been developed as a good candidate in wide operating \temperature range applications. In order to realize the application of Tb0.36Dy0.64(Fe0.85Co0.15)2 compound in passive damping control system, it is important to systemically investigate its damping capacity under coupled magnetomechanical loadings. In the present work, <110> oriented Tb0.36Dy0.64(Fe0.85Co0.15)2 crystal was prepared with a growth velocity of 480 mm/h by zone melting directional solidification method. The damping capacity was studied by quasi--static stress--strain measurements under a series of constant magnetic fields up to 0.325 T. Stress ranges from 0 to -10, -30 and -50 MPa were used at room temperature. The results show that maximum damping capacity (Δ W/W) is obtained at zero field. Under certain stress amplitude σm, Δ W/W decreases with the increase of magnetic field. A critical magnetic field exists in the damping capacity--magnetic field (Δ W/W--H) curves, and seems independent on the stress magnitude. Under coupled magnetic--stress loadings, the magnetostriction--magnetization curves were measured to analyze the switching process of domains and movements of domain walls, by which an explanation on the variation of damping capacity was given.

Key words:  Tb--Dy--Fe alloy      magnetostriction      magnetomechanical damping      magnetization     
Received:  10 November 2008     
ZTFLH: 

TG113

 
Fund: 

Supported by National Natural Science Foundation of China (No. 50701039), New Century Program for Excellent Talents in University (No.05--0526),
and Program for Changjiang Scholars and Innovative Research Team in University (No. 0651)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/749

[1] Ge T S. Physics, 1988; 71: 1
(葛庭燧. 物理, 1988; 71: 1)
[2] Degauque J. Mater Sci Forum, 2001; 366–368: 453
[3] Jiang C B, Zhao Y, Xu H B. Acta Metall Sin, 2004; 40:373
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 373)
[4] Hathaway K B, Clark A E, Teter J P. Metall Mater Trans, 1995; 26A: 2797
[5] Teter J P, Hathaway K B, Clark A E. J Appl Phys, 1996; 79: 6213
[6] Pei Y M, Fang D N. Chin Phys Lett, 2007; 24: 1611
[7] Clark A E, Teter J P, McMasters O D. J Appl Phys, 1988; 63: 3910
[8] Zhao Y, Jiang C B, Zhang H, Xu H B. J Alloy Compd, 2003; 354: 263
[9] Clark A E. Ferromagnetic Materials. Vol.1, Amsterdam: North–Holland, 1980: 531
[10] Ma T Y, Jiang C B, Xu X, Zhang H, Xu H B. J Magn Magn Mater, 2005; 292: 317
[11] Ma T Y, Jiang C B, Xu H B. Appl Phys Lett, 2005; 86:162505
[12] Peterson D T, Verhoeven J D, McMasters O D, Spitzig WA, J Appl Phys, 1989; 65: 3712
[13] Smith G W, Birchak J R. J Appl Phys, 1969; 40: 5174
[14] Ma T Y, Yan M, Chen X Y, Jiang C B, Xu H B. Physica, 2008; 403B: 3677

[1] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[2] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[3] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] YAO Zhanquan, ZHAO Zengqi, JIANG Liping,HAO Hongbo, WU Shuangxia,ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY[J]. 金属学报, 2013, 49(1): 87-91.
[5] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
[6] CUI Yue JIANG Chengbao XU Huibin. INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY[J]. 金属学报, 2011, 47(2): 214-218.
[7] CHEN Libiao ZHU Xiaoxi LI Chuan LIU Jinghua JIANG Chengbao XU Huibin. <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. 金属学报, 2011, 47(2): 169-172.
[8] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[9] JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. 金属学报, 2009, 45(12): 1473-1478.
[10] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[11] LIN Jian; Haiyan ZHAO; Zhipeng CAI; Yongping LEI. STUDY ON THE RELATIONSHIP BETWEEN MAGNETIC FIELD AND RESIDUAL STRESS IN STEEL MATERIALS[J]. 金属学报, 2008, 44(4): 451-456 .
[12] ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin. Melt quenched Fe81Ga19 magnetostriction alloy[J]. 金属学报, 2008, 44(3): 361-364 .
[13] Xiang Zhao; Shoujing WANG; GONG Ming-Long; liang zuo. Influence of austenization temperature on the morphology of pearlite in Fe-0.12%C alloy under high magnetic field[J]. 金属学报, 2008, 44(11): 1305-1309 .
[14] BAI Xia-Bing; MA Tian-Yu. MAGNETOMECHANICAL COUPLING FACTOR (k33) OF Tb0.36Dy0.64(Fe0.85Co0.15)2 <110> ORIENTED CRYSTALS[J]. 金属学报, 2008, 44(10): 1231-1234 .
[15] Xu Yun-Wei; MA Tian-Yu; Mi YAN. MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS[J]. 金属学报, 2008, 44(10): 1235-1237 .
No Suggested Reading articles found!