Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 754-758    DOI:
论文 Current Issue | Archive | Adv Search |
PREPARATION AND MAGNETIC ANISOTROPY OF NANOCRYSTALLINE Fe0.13(CoxNi1-x)0.87FINE FIBERS
CHEN Yun; LIU Hengxing; MENG Xianfeng; SHEN Xiangqian
School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013
Cite this article: 

CHEN Yun LIU Hengxing MENG Xianfeng SHEN Xiangqian. PREPARATION AND MAGNETIC ANISOTROPY OF NANOCRYSTALLINE Fe0.13(CoxNi1-x)0.87FINE FIBERS. Acta Metall Sin, 2009, 45(6): 754-758.

Download:  PDF(4362KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Small diameter ferromagnetic metal fibers (Fe, Ni, Co and their alloys fibers) with the anisotropic characteristics are attractive as fillers in polymer--matrix composites, advanced electromagnetic interference (EMI) shielding and wide--band microwave absorbing materials. Because lectromagnetic radiations with high frequencies only penetrate the near surface region of an electrical conductor, the composite material containing metal fibers with a small diameter is more effective than that with a large diameter. The filler of magnetic metal fibers with a diameter of 1 μm or less is therefore required technologically. Although iron fine fibers have been produced and used in several technological fields owing to a low cost, these iron fibers with a high specific surface area are generally not chemically stable due to easily oxidizing in an ambient atmosphere, which lowers their performance. The alloying can improve the anti--oxidation properties of ferromagnetic metal fibers and enhance their magnetic characteristics. In the present work, the nanocrystalline Fe0.13(CoxNi1-x)0.87(x=0.20, 0.30, 0.50, 0.80) fine fibers were prepared by the organic--gel thermal reduction process using citric acid and metal salts as the raw materials. The structure and morphology of the gel precursors and the fibers derived from these gel precursors in the thermal reduction process were characterized by FTIR, XRD and SEM. The magnetic properties for as--prepared alloy fibers were examined using vibrating sample magnetometer (VSM). The diameters of alloy fibers are in the range of 0.3 to 2 μm and these consist of grains with the size of about 34 nm. The experimental data show that the aligned nanocrystalline Fe0.13(CoxNi1-x)0.87 fibers exhibit an obvious magnetic anisotropy. This magnetic anisotropy is mainly effected by the magnetocrystalline anisotropy, shape anisotropy and magnetostatic interaction. The magnetizing ease axis for the nanocrystalline fiber is parallel to the fiber axis whilst the hard axis is perpendicular to the fiber axis. The nanocrystalline Fe0.13(Co0.50Ni0.50)0.87 fibers have a very high remanence ratio of 0.48.

Received:  18 November 2008     
ZTFLH: 

TB333

 
Fund: 

Supported by National Natural Science Foundation of China (Nos. 50474038 and 50674048) and\par China Postdoctoral Science Foundation (No. 20080431069)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/754

[1] Tong G X, Guan J G, Fan X A, Wang W, Song F H. Chin J Inorg Chem, 2008; 24: 270
(童国秀, 官建国, 樊希安, 王维, 宋发辉. 无机化学学报, 2008; 24: 270)
[2] Li X L, Jia H S. J Mater Eng, 2007; (3): 14
(李小莉, 贾虎生. 材料工程, 2007; (3): 14)
[3] Yu J Y, Zhu J, Zhou D, Qian J G, Cai B C, Zhao X L. J Fun Mater, 2000; 31: 481
(余晋岳, 朱军, 周 狄, 钱建国, 蔡炳初, 赵小林. 功能材料, 2000; 31: 481)
[4] Wu H, Zhang R, Liu X X, Lin D D, Pan W. Chem Mater, 2007; 19: 3506
[5] Hu H N, Chen H Y, Yu S Y, Chen J L, Wu G H, Meng F B, Qu J P, Li Y X, Zhu H, Xiao Q. J Magn Magn Mater, 2005; 295: 257
[6] Wu M Z, He H H, Zhao Z S, Yao X. Appl Phys, 2000; 33: 2398
[7] Zhao Z S, Wu M Z, He H H. J Huazhong Univ Sci & Technol, 1998; 26(7): 74
(赵振声, 吴明忠, 何华辉. 华中理工大学学报, 1998; 26(7): 74)
[8] Li X C, Gong R Z, Nie Y, Zhao Z S, He H H. Mater Chem Phys, 2005; 94: 408
[9] Shen X Q, Jing M X, Wang T P, Cao K. Rare Met Mater Eng, 2006; 35: 945
(沈湘黔, 景茂祥, 王涛平, 曹凯. 稀有金属材料科学与工程, 2006; 35: 945)
[10] Shen X Q, Cao K, Zhou J X. Nonferrous Met Soc China, 2006; 16: 1003
[11] Cao K, Shen X Q, Jing M X, Zhang C Y. J Mater Sci Eng, 2006; 24: 174
(曹凯, 沈湘黔, 景茂祥, 张春野. 材料科学与工程, 2006; 24: 174)
[12] Strathmann T J, Myneni S B. Geochim Cosmochim Acta, 2004; 68: 3441
[13] Deacon G B, Phillips R J. Coord Chem Rev, 1980; 33: 227
[14] Yoo Y K, Xue Q Z, Chu Y S, Xu S F, Ude H G, Lee H C, Stein W G, Xiang X D. Intermetallics, 2006; 14: 241
[15] Ferr´e R, Ounadjela K, George J M, Piraux L, Dubois S. Phys Rev, 1997; 56B: 14066
[16] Ounadjela K, Ferr´e R, Louail L, George J M, Maurice J L, Piraux L, Dubois S. Appl Phys, 1997; 81: 5455
[17] Jiang H B, Gu F, Li C Z. Chin J Proc Eng, 2008; 8: 384
(姜海波, 顾峰, 李春忠. 过程工程学报, 2008; 8: 384)
[18] Xiao J J, Sun C, Xue D S, Li F S. Acta Phys Sin, 2001; 50: 1605
(肖君军, 孙超, 薛德胜, 李发伸. 物理学报, 2001; 50: 1605)
[19] Zhao Y M, Dunnill C W, Zhu Y Q, Gregory D H, Kockenberger W, Li Y H, Hu W B, Ahmad I, McCartney D G. Chem Mater, 2007; 19: 916
[20] Bozorth R M. Ferromagnetic Materials. New York: IEEE Press, 1993: 664
[21] Du Y W. Prog Phys, 1993; 13: 255
(都有为. 物理学进展, 1993; 13: 255)

[1] CAI Hui WANG Fei WANG Yaping SONG Xiaoping DING Bingjun. FABRICATION OF Cu/Si COMPOSITES ON SOL–GEL PRETREATED Si POWDERS[J]. 金属学报, 2009, 45(10): 1261-1266.
[2] LI Shangping LUO Heli CAO Xu ZHANG Xi'e FENG Di. MICROSTRUCTURE OF PILE-UP WELDING CHROMIUM CARBIDE/Ni3 Al COMPOSITE CLADDING ON DZ125 ALLOY[J]. 金属学报, 2008, 44(12): 1450-1454.
No Suggested Reading articles found!