Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (5): 513-518    DOI:
论文 Current Issue | Archive | Adv Search |
NEUTRON DIFFRACTION STUDY OF DEUTERIUM OCCUPANCY OF DEUTERIDE OF LAVES PHASE ALLOY Ti0.68Zr0.32MnCrD3.0
WU Erdong1; GUO Xiumei1; SUN Kai2
1.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2.China Institute of Atomic Energy; Beijing 102413
Cite this article: 

WU Erdong GUO Xiumei SUN Kai. NEUTRON DIFFRACTION STUDY OF DEUTERIUM OCCUPANCY OF DEUTERIDE OF LAVES PHASE ALLOY Ti0.68Zr0.32MnCrD3.0. Acta Metall Sin, 2009, 45(5): 513-518.

Download:  PDF(1095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The occurrences of diffuse scattering in the neutron diffraction patterns of the deuterides of Laves phase have frequently been reported, but have not been specifically studied. As the diffuse scattering indicates the formation of short range ordering of D and/or alloy atoms in the phase, we have particularly studied the possible short range ordering of interstitial D atoms in the deuteride of a null matrix Laves phase alloy Ti0.68Zr0.32MnCr by neutron and XRD techniques. The neutron diffraction pattern of the deuteride Ti0.68Zr0.32MnCrD3.0 has shown not only the Bragg peaks, but also strong diffuse scattering, whereas the corresponding XRD pattern has only shown the Bragg peaks. These phenomena confirm the formation of short range ordering of interstitial D in the deuteride. The D occupancy and short range ordering of the deuteride were analyzed by the Rietveld refinement and Fourier transformation. The analyses suggest that a fraction of D atoms in the deuteride is randomly and unsaturatedly distributed in certain interstices, and forms a long range ordered structure in the crystal lattice. These interstitial atoms are in four types of the A2B2 tetrahedral sites, where the occupancies of the D atoms in the 6h1 and 12k crystallographic sites are higher than those in the 6h2 and 24l sites. However, other D atoms in the deuteride have stayed away from the centres of the interstitial sites to different extents, and formed the short range ordered structure. These D atoms keep an average interdistance of 0.243 nm for the nearest neighbours, larger than that of about 0.2 nm for the long range ordered D atoms. The short and long range ordered D atoms together form a cluster network surround the Ti/Zr atoms along the c--axis of the lattice. The phenomenon is likely to be caused by the accumulation of great amount of D atoms in the interstices of the alloy.

Key words:  deuteride of Laves phase alloy      neutron diffraction      D occupancy      short range ordering structure      diffuse scattering     
Received:  10 October 2008     
ZTFLH: 

TG146.2

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I5/513

[1] Chen C P, Wang Q D. Acta Energ Solar Sin (special issue),1999: 189
(陈长聘, 王启东. 太阳能学报(特刊), 1999: 189)
[2] Hu Z L. Hydrogen Storage Materials. Beijing: Chemical Industry Press, 2002: 86
(胡子龙. 贮氢材料. 北京: 化学工业出版社, 2002: 86)
[3] Moriwaki Y, Gamo T, Iwaki T. J Less–Common Met, 1991; 172: 1028
[4] Park J G, Jang H Y, Han S C, Lee P S, Lee J Y. J Alloys Compd, 2001; 325: 293
[5] Guo X M, Wu E D, Wang S C. Rare Metals, 2006; 25(6): 218
[6] Guo X M, Wu E D. J Alloy Compd, 2008; 455: 191
[7] Sun K, Guo X M, Wu E D, Liu Y T, Wang H L. Physica, 2006; 385–386B: 137
[8] Dwight A E. Trans ASM, 1961; 53: 479
[9] Zheng Q Y, Yu S Z, Hou Y J, Chen X Z. Henan Sci, 1997; 15: 149
(郑庆元, 余守志, 侯玉杰, 陈峡忠. 河南科学, 1997; 15: 149)
[10] Shoemaker D P, Shoemaker C B. J Less–Common Met,1979; 68: 43
[11] Magee C B, Liu J, Lundin C E. J Less–Common Met, 1981; 78: 119
[12] Jacob I, Shaltiel D. J Less–Common Met, 1979; 65: 117
[13] Westlake D G. J Less–Common Met, 1983; 90: 251
[14] Yuan X Z, Wu E D, Guo X M, Du X M, Sun K, Chen D F,Chen B, Sun G A. At Energy Sci Technol, 2008; 41: 517
(苑学众, 吴尔冬, 郭秀梅, 杜晓明, 孙 凯, 陈东风, 陈 波, 孙光爱. 原子能科学技术, 2008; 41: 517)
[15] Xue Y J, Guo L P, Chen D F, Zhang B S, Chen N, Zhang L, Sun K, Xiao H W, Zhang L F, Wang H L, Li J H, Wu E D, Yuan X Z. At Energy Sci Technol, 2005; 39: 263
(薛艳杰, 郭立平, 陈东风, 张百生, 陈 娜, 张 莉, 孙 凯, 肖红文, 张凌飞, 王洪立, 李峻宏, 吴尔冬,苑学众. 原子能科学技术, 2005; 39: 263)
[16] Hunter B A, Howard C J. LHPM a Computer Program forRietveld Analysis of X–ray and Neutron Powder DiffractionPatterns (ANSTO report). Sydney: Australian Nuclear
Science and Technology Organization, 1998
[17] Larson A C, Von Dreele R B. General Structure AnalysisSystem (GSAS) (Report LAUR 86–748). New Mexico:Los Alamos National Laboratory, 2004
[18] Klug H P, Alexander L E. X–ray Diffraction Procedures.New York: Wiley, 1974: 791
[19] Didisheim J J, Yvon K, Shaltiel D, Fischer P. Solid State Commun, 1979; 31: 47
[20] Didisheim J J, Yvon K, Shaltiel D, Fischer P, Bujard P, Walker E. Solid State Commun, 1979; 32: 1087
[21] Pontonnier L, Miraglia S, Fruchart D, Soubeyroux J L, Baudry A, Boyer P. J Alloys Compd, 1992; 186: 241
[22] Soubeyroux J L, Pontonnier L, Miraglia S, Isnard O, Fruchart D, Akiba E, Hayakawa H, Fujitani S, Yonezu IZ. Phys Chem, 1993; 179: 187
[23] Guo X M. PhD Thesis, Graduate University of Chinese Academy of Sciences, Beijing, 2008
(郭秀梅. 中国科学院研究生院博士学位论文, 北京, 2008)
[24] Knell U, Wipf H, Lautenschlager G, Hock R, Weitzel H,Ressouche E. J Phys: Condens Matter, 1994; 6: 1461
[25] Sorby M H, Mellergard A, Delaplane R G, Wannberg A,Hauback B C, Fjellvag H. J Alloys Compd, 2004; 363: 209
[26] Fruchart D, Soubeyroux J L, Hempelmann R. J Less Common Met, 1984; 99: 307
[27] Shinar J, Jacob I, Davidov D, Shaltiel D. Hydrogen Sorption Properties in Binary and Psuedobinary Intermetallic Compounds, in Hydrides for Energy Storage. Norway:Geilo, 1978: 337

[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[3] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[4] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[5] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] Hailong QIN,Ruiyao ZHANG,Zhongnan BI,Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. 金属学报, 2019, 55(8): 997-1007.
[7] Zukun YANG, Changsheng ZHANG, Beibei PANG, Yanyan HONG, Fangjie MO, Zhao LIU, Guang'ai SUN. Effect of Initial Microstructures on the Macroscopic Mechanical Properties of Polycrystalline Beryllium[J]. 金属学报, 2018, 54(8): 1150-1156.
[8] Meijuan LI,Xiaolong LIU,Yuntao LIU,Mingyi ZHENG,Chen WANG,Dongfeng CHEN. TEXTURE EVOLUTION AND MECHANICAL PROPER-TIES OF Mg/Al MULTILAYERED COMPOSITE SHEETSPROCESSED BY ACCUMULATIVE ROLL BONDING[J]. 金属学报, 2016, 52(4): 463-472.
[9] Pingguang XU,Jiang YIN,Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION[J]. 金属学报, 2015, 51(11): 1297-1305.
[10] ZHANG Meng, LIU Danmin, LIU Cuixiu, HUANG Qingzhen, WANG Shaobo, ZHANG Hu, YUE Ming. RESEARCH OF THE RELATIONSHIP BETWEEN PHASE TRANSITION PROCESS AND MAGNETIC PROPERTIES IN MAGNETIC REFRIGERATION MATERIAL Mn1.2Fe0.8P0.76Ge0.24[J]. 金属学报, 2013, 49(7): 783-788.
[11] JIANG Wenchun WOO Wanchuck WANG Bingying TU Shan–Tung . A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD[J]. 金属学报, 2012, 48(12): 1525-1529.
[12] XU Pingguang; TOMOTA Yo. Progress in Materials Characterization Technique Based on in Situ Neutron Diffraction[J]. 金属学报, 2006, 42(7): 681-688 .
[13] PAN Hongge; DU Honglin; CHEN Changpin; HAN Xiufeng; YANG Fuming (Department of Materials Science and Engineering; Zhejiang University; Hangzhou 310027)(State Key Laboratory for Magnetism; Institute of Physics; The Chinese Academy of Sciences; Beijing 100080)(Institute of Chinese Atomic Energy; Beijing 102413). STRUCTURAL CHARACTERIZATION OF THE Y_3(Fe, Mo)_(29) INTERMETALLIC COMPOUND[J]. 金属学报, 1998, 34(5): 473-482.
[14] YANG Wangyue; SHENG Lizhen;SUN Zuqing; HUANG Yuanding; MAO Weimin (University of Science and Technology Beijing; Beijing 100083); ZHANG Baisheng; YE Chuntang (China Institute of Atomic Energy; Beijing 102413)(Manuscript received 1995-11-10; in revised form 1996-04-05). NEUTRON DIFFRACTION STUDY ON SITE OCCUPATION OF SUBSTITUTIONAL ELEMENTS AT SUBLATTICE IN Fe_3Al INTERMETALLICS[J]. 金属学报, 1996, 32(8): 799-804.
[15] REN Xiaobing; WANG Xiaotian (Xi'an Jiaotong University) SHIMIZU Ken'ichi(Kanazawa institute of Technology; Japan) TADAKI Tsugio (Osaka University;Japan)(Manuscript received 27 October; 1993; in revised form 4 January; 1994). A TEM STUDY OF SPINODAL DECOMPOSITION IN Fe-1 .83C MARTENSITE[J]. 金属学报, 1994, 30(7): 289-295.
No Suggested Reading articles found!