Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 369-373    DOI:
论文 Current Issue | Archive | Adv Search |
INTERFACE REACTION BETWEEN CERAMIC MOULDS AND Ti46Al1B AS--CAST VALVES
MA Yingche; WANG Weidong; CHEN Bo; GAO Ming; LIU Kui; LI Yiyi
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

MA Yingche WANG Weidong CHEN Bo GAO Ming LIU Kui LI Yiyi. INTERFACE REACTION BETWEEN CERAMIC MOULDS AND Ti46Al1B AS--CAST VALVES. Acta Metall Sin, 2009, 45(3): 369-373.

Download:  PDF(1130KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al2O3 and Y2O3 were used as surface materials of shell mould to centrifugal--cast Ti46Al1B (atomic fraction, %) valves, the interface reaction between shell and alloy and its mechanism were analyzed by SEM and XRD, and oxygen increment in the castings was measured by gas analysis. The results show that the reaction layer thicknesses of Y2O3 and Al2O3 shells are about 90 and 170 μm, respectively, indicating Y2O3 shell has better thermodynamic stability and smaller increment of oxygen in casting than Al2O3 shell, which is accordant with thermodynamic calculation. So the Y2O3 mould is fitter for casting Ti46Al1B valves than Al2O3 mould.

Key words:  TiAl alloy      centrifugal casting      interface reaction      reaction layer      thermodynamics     
Received:  21 August 2008     
ZTFLH: 

TG146.2

 
  TG249.5

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/369

[1] Kim Y W. Mater Sci Eng, 1995; A192–193: 519
[2] Kim Y W. Acta Metall, 1999; 12: 334
[3] LorettoMH, HorspoolD, Botten R, HuD, Li Y G, Srivastava D, Sharman R, Wu X. Mater Sci Eng, 2002; A329–331: 1
[4] Yamaguchi M, Inui H. In: Daloria R, Lewwandowski J J, Liu C T, Martin P L, Miracle D B, Nathal M V, eds., Structural Intermetallics, Warrendale: TMS, 1993: 127
[5] Lapin J, Nazmy M. Mater Sci Eng, 2004; A380: 298
[6] Klaus G. Intermetallics, 2006; 14: 355
[7] Liu K, Ma Y C, Gao M, Rao G B, Li Y Y, Wei K, Wu X H, Loretto M H. Intermetallics, 2005; 13: 925
[8] Blum M, Jarczyk G, Scholz H, Pleier S, Busse P, Laudenberg H J, Segtrop K, Simon R. Mater Sci Eng, 2002; A329–331: 616
[9] Sommer A W, Keijzers G C. In: Kim Y W, Clemens H, Rosenberger A H, eds., Gamma Titanium Aluminides, Warrendale: TMS, 2003: 3
[10] Jia Q, Cui Y Y, Yang R. Acta Metall Sin, 2002; 38: 351
(贾清, 崔玉友, 杨锐. 金属学报, 2002; 38: 351)
[11] Jia Q, Cui Y Y, Yang R. J Mater Sci, 2006; 41: 3045
[12] Jones S, Bentley S A, Marquis P M. Br Ceram Trans, 2002; 101: 100
[13] Nan H, Xie C M. Acta Metall Sin, 2002; 38: 345
(南海, 谢成木. 金属学报, 2002; 38: 345)

[14] Yan C F, Zhao G J, Hang Y, Xu J. J Synth Cryst, 2005; 34: 144
(严成锋, 赵广军, 杭寅, 徐军. 人工晶体学报, 2005; 34: 144)

[15] Kobayashi Y, Tsukihashi F. High Temp Mater Processes, 2000; 19: 211

[1] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[2] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[5] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[6] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[7] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[8] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[9] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[10] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[11] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[12] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[13] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[14] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
No Suggested Reading articles found!