Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (12): 1421-1424    DOI:
论文 Current Issue | Archive | Adv Search |
A GRAIN GROWTH RATE EQUATION BASED ON AVERAGE N–HEDRA MODEL
YUE Jingchao 1;2; WANG Hao 1; LIU Guoquan 1;3; LUAN Junhua 1
1. School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
2. Sinosteel Xingtaimachinery and Millroll Co.; Ltd; Xingtai 054025
3. State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

YUE Jingchao WANG Hao LIU Guoquan LUAN Junhua . A GRAIN GROWTH RATE EQUATION BASED ON AVERAGE N–HEDRA MODEL. Acta Metall Sin, 2009, 45(12): 1421-1424.

Download:  PDF(430KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The law of grain growth is one of the classic problems in materials science. In 1952, an exact formula named von Neumann relation was derived for grain growth in two–dimensional space that the growth rate of a grain depends only on its number of sides n. In three dimensions, topology– dependent rate equations of grain growth are usually proposed to describe the individual grain growth. Such equations can describe the mean growth rate of grains within the same topological class and can be used to derive general properties of polycrystals. In this paper, based on average N–hedra (ANHs) model proposed by Glicksman recently, the law of the change of grain surface area was studied and a topology–dependent rate equation of grain surface area change was derived. Both the contributions of the grain boundary motion and grain edges motion to the grin groth were considered in the derivation. This topology–dependent rate equation can be expressed through a simple relation that the change rate of grain surface area is proportional to the square root of the number of grain faces. This result can assist in a better understanding of the process of grain growth rom a statistical point of view and is similar to the reported topology-dependent grain growth equations.

Key words:  grain growth      average N-hedra (ANHs)      topology     
Received:  15 December 2008     
ZTFLH: 

TG111

 
  O189

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50671010, 50901008 and 50871017) and Specialized Research Fund for the Doctoral Program of Higher Education (No.200800080003)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I12/1421

[1] Wang H, Liu G Q. Appl Phys Lett, 2008; 93: 131902
[2] Wang H, Liu G Q. Acta Metall Sin, 2008; 44: 769
(王浩, 刘国权. 金属学报, 2008; 44: 769)
[3] Wang C, Liu G Q, Yu H B. Acta Metall Sin, 2004; 12: 1233
(王超, 刘国权, 于海波. 金属学报, 2004; 12: 1233)
[4] Wang H, Liu G Q, Qin X G. Acta Metall Sin, 2008; 44: 13
(王浩, 刘国权, 秦湘阁. 金属学报, 2008; 44: 13)
[5] Hillert M. Acta Metall, 1965; 13: 227
[6] River N. Philos Mag, 1983; 47B: L45
[7] Mullins W W. Acta Metall, 1989; 37: 2979
[8] Glazier J A. Phys Rev Lett, 1993; 70: 2170
[9] Hilgenfeldt H, Kraynik A M, Reinelt D A, Sullivan J M. Europhys Lett, 2004; 67: 484
[10] Glicksman M E. Philos Mag, 2005; 85: 3
[11] MacPerson R D, Strolovitz D J. Nature, 2007; 446: 1053
[12] Yu H B, Liu G Q. Chin Sci Bull, 1996; 41: 2000
(于海波, 刘国权. 科学通报, 1996; 41: 2000)
[13] Liu G Q, Song X Y, Yu H B, Gu N J. Acta Metall Sin, 1999; 35: 245
(刘国权, 宋晓艳, 于海波, 谷南驹. 金属学报, 1999; 35: 245)
[14] Wang H, Liu G Q. Acta Metall Sin, 2008; 44: 1332
(王浩, 刘国权. 金属学报, 2008; 44: 1332)
[15] Glicksman M E, Rios P R. Philos Mag, 2007; 87: 189
[16] Glicksman M E, Rios P R. Z Metallkd, 2005; 96: 1099
[17] Glicksman M E. J Mater Sci, 2005; 40: 2149
[18] Glicksman M E. XXIICTAM. Warsaw Poland, 2004
[19] Rios P R, Glicksman M E. Mater Res, 2006; 9: 231
[20] Rios P R, Glicksman M E. Acta Mater, 2006; 54: 5313
[21] Rios P R, Glicksman M E. Acta Mater, 2006; 54: 1041
[22] Rios P R, Glicksman M E. Acta Mater, 2007; 55: 1565
[23] Rios P R, Glicksman M E. Acta Mater, 2008; 56: 1165
[24] Glicksman M E, Rios P R, Lewis D J. Acta Mater, 2007; 55: 4167
[25] Cahn J W. Trans AIME, 1967; 239: 611
[26] Cox S J, Fortes M A. Philos Mag Lett, 2003; 83: 281
[27] Cox S J, Graner F. Phys Rev, 2004; 69E: 031409
[28] Wakai F, Enomoto N, Ogawa H. Acta Mater, 2000; 48: 1297

[1] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[3] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[4] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[7] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[8] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[9] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[10] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[11] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
[12] ZHOU Guangzhao WANG Yongxin CHEN Zheng. PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH[J]. 金属学报, 2012, 48(2): 227-234.
[13] CHEN Weiye TONG Weiping ZHANG Hui ZHAO Xiang ZUO Liang. TEXTURE EVOLUTION AND GROWTH OF DIFFERENTLY SIZED GRAINS IN IF STEEL DURING ANNEALING[J]. 金属学报, 2010, 46(9): 1055-1060.
[14] FU Liming SHAN Aidang WANG Wei. EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL[J]. 金属学报, 2010, 46(7): 832-837.
[15] ZHOU Yizhou JIN Tao SUN Xiaofeng. STRUCTURE EVOLUTION IN DIRECTIONALLY SOLIDIFIED BICRYSTALS OF NICKEL BASE SUPERALLOYS[J]. 金属学报, 2010, 46(11): 1327-1334.
No Suggested Reading articles found!