Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (11): 1370-1377    DOI:
论文 Current Issue | Archive | Adv Search |
SUBSEQUENT YIELD AND PLASTIC FLOW ANALYSIS OF POLYCRYSTALLINE COPPER UNDER BIAXIAL LOADING
SHI Yanke; ZHANG Keshi; HU Guijuan
Key Laboratory of Disaster Prevention and Structural Safety; Guangxi University; Nanning 530004
Cite this article: 

SHI Yanke ZHANG Keshi HU Guijuan. SUBSEQUENT YIELD AND PLASTIC FLOW ANALYSIS OF POLYCRYSTALLINE COPPER UNDER BIAXIAL LOADING. Acta Metall Sin, 2009, 45(11): 1370-1377.

Download:  PDF(1123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The yield characteristic and the plastic flow direction of a polycrystal copper are investigated, in which the anisotropy and random orientation of each grain in the polycrystal are taken into account, while the microstructure evolvement and the slip deformation mechanism are also analyzed. Applying the crystal plasticity theory associated with representative volume element (RVE) of a polycrystal aggregate, which consists of 200 polyhedral grains with irregular shape and orientation, the plastic deformation of polycrystalline copper is calculated through applying biaxial load along different paths to the RVE aggregate, stage by stage to simulate the material's biaxial stress state and the sub-stage load path. Then the yield surface and the subsequent yield surface for the RVE under preloading are obtained by the simulation through FEM calculation with the user crystalline material subroutine. The calculation results of the subsequent yield surface shape and the plastic flow direction are resolved and are discussed further. According to the results of yield surface and plastic flow direction of the polycrystal RVE, it can be concluded that the corner may appear on the subsequent yield surface at the preload point and the corner's appearance is dependent on the yield definition and the preload direction on the $\pi$ plane; the classical normality description for plastic flow is proved to be reasonable for the polycrystal aggregate but there is a difference between the flow direction and the surface normal vector, which is analyzed by statistical calculation, and the statistical difference between the plastic flow direction and the normal vector of subsequent yield surface is related with both the yield definition and direction of preloading.

Key words:  polycrystal copper      crystal plasticity      subsequent yield surface      plastic flow      finite element simulation     
Received:  17 April 2009     
ZTFLH: 

TG146

 
  O344

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.90815001 and 10662001), Natural Science Foundation of Guangxi Province (No.0832024) and Science Foundation of Guangxi University

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I11/1370

[1] Shiratori E, Ikegami K, Yoshida F. Bull JSME, 1976; 19: 877
[2] Shiratori E, Ikegami K, Yoshida F, Kaneko K, Koike S. Bull JSME, 1976; 19: 1122
[3] Phillips A, Lu W Y. J Eng Mater Technol, 1984; 106: 349
[4] Mazilu P, Meyers A. Arch Appl Mech, 1985; 55: 213
[5] Wu H C, Yeh W C. Int J Plast, 1991; 7: 803
[6] Naghdi P M, Essenburg F, Koff W. J Appl Mech, 1958; 25: 201
[7] Shiratori E, Ikegami K, Kaneko K. Bull JSME, 1974; 17: 1405
[8] Phillips A, Moon H. Acta Mech, 1977; 27: 91

 

[9] Ivey H J. J Mech Eng Sci, 1961; 3: 15
[10] Mair W M. Pugh H. J Mech Eng Sci, 1964; 6: 150
[11] Khan A S, Wang X W. Int J Plast, 1993; 9: 889
[12] Su L. Master Dissertation, Northwestern Polytechnical University, 2007
(苏莉. 硕士学位论文, 西北工业大学, 2007)
[13] Hashiguchi K. Int J Plast, 2005; 21: 321
[14] Hashiguchi K. Int J Plast, 1997; 13: 37
[15] Kuroda M, Tvergaard V. Acta Mater, 1999; 47: 3879
[16] Kuroda M, Tvergaard V. J Mech Phys Solids, 2001; 49: 1239
[17] Hill R, Rice J R. J Mech Phys Solids, 1972; 20: 401
[18] Asaro R J, Rice J R. J Mech Phys Solids, 1977; 25: 309
[19] Hutchinson J W. Proc R Soc London, 1970; 319A: 247
[20] Hutchinson J W. Proc R Soc London, 1976; 348A: 101
[21] Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 837
[22] Zhang K S. Acta Mech Sin, 2004; 36: 714
(张克实. 力学学报, 2004; 36: 714)
[23] Zhang K S, Wu M S, Feng R. Int J Plast, 2005; 21: 801
[24] Drucker D C. Proc First US Congress of Applied Mechanics, New York: ASME, 1951: 487

[1] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[3] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[4] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[5] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[6] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[7] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[8] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[9] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[10] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[11] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[12] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[13] Shiwei HAN, Duoqi SHI, Xiaoguang YANG, Guolei MIAO. COMPUTATIONAL STUDY ON MICROSTRUCTURE-SENSITIVE HIGH CYCLE FATIGUE DISPERSIVITY[J]. 金属学报, 2016, 52(3): 289-297.
[14] Shoudong CHEN,Xianghua LIU,Lizhong LIU,Meng SONG. CRYSTAL PLASTICITY FINITE ELEMENT SIMULA- TION OF SLIP AND DEFORMATION IN ULTRA- THIN COPPER STRIP ROLLING[J]. 金属学报, 2016, 52(1): 120-128.
[15] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
No Suggested Reading articles found!