Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (11): 1314-1319    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF DEFORMATION TEMPERATURE ON THE MICROSTRUCTURE OF Nb-MICROALLOYED DUAL PHASE STEEL
DONG Yi;  XU Yunbo; WU Di
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
Cite this article: 

DONG Yi XU Yunbo WU Di. EFFECT OF DEFORMATION TEMPERATURE ON THE MICROSTRUCTURE OF Nb-MICROALLOYED DUAL PHASE STEEL. Acta Metall Sin, 2009, 45(11): 1314-1319.

Download:  PDF(1203KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Previous researches indicated that the mechanical property of dual phase steel is not only depended on the volume fractions and grain sizes of ferrite and martensite but also the morphology and distribution of martensite island. Therefore, it is desired to obtain dispersive distribution of fine martensite islands in the matrix of fine grained ferrite. Generally, there are two methods to refine ferrite grain. First, γ/α dynamic transformation is promoted by increasing austenite free energy through heavy deformation at low temperature region. Second, fine ferrite grain is achieved by refining the initial austenite grain which can be obtained by microalloying, recrystallizing and cyclic heat treatment. In this paper, a low carbon Nb-microalloyed steel was cyclic-heat-treated to obtain 4.2 μm sized initial austenite grain and then cooled to different temperatures (810-720 ℃) to compressively deform. The effects of deformation temperature on flow stress curve, and the morphologies and distributions of ferrite and martensite island, two constituted phases in the steel, were investigated. The flow stress curves possess peak stress which increases first and then decreases with decreasing of deformation temperature. And the volume fraction of ferrite also decreases first and then increases with decreasing of deformation temperature, but the change is slight. At the lowest deformation temperature of 720 ℃, the size of ferrite grain was decreased to 2.8 μm and the volume fraction of fine martensite island which is dispersively distributed around the boundaries of ferrite was increased up to 22.7%. The inhomogeneity of the hardness of ferrite grains lowers with increasing of deformation temperature, and the hardness approaches a small stable value at last. The EBSD orientation maps show that the fraction of low angle grain boundary increases with decreasing of deformation temperature.

Key words:  Nb-microalloyed steel      ultrafine grain      deformed in low temperature region      orientation map of grain     
Received:  14 May 2009     
ZTFLH: 

TG142.1

 
  TG156.1

 
Fund: 

Supported by National Natural Science Foundation of China (No.50504007) and National Science and Technical Program of China (No.2007BAE51B07)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I11/1314

[1] Shi M F, Thomas G H, Chen M X, Fekete J R. Iron Steelmaker, 2002; 29(3): 27
[2] Llewellyn D T, Hillis D J. Ironmaking Steelmakeing, 1996; 23: 471
[3] Erdogan M, Tekeli S. Mater Des, 2002; 23: 597
[4] Li S X, Li G Y, Weng Y Q. Z Metallkd, 2004; 29: 115
[5] Adamczyk J, Grajcar A. J Mater Process Technol, 2005; 162–163: 267
[6] Mousavi Anijdan S H, Vahdani H. Mater Lett, 2005; 59: 1828
[7] Lis J, Lis A K, Kolan C. J Mater Process Technol, 2005; 162–163: 350
[8] Xu H W, Yang W Y, Sun Z Q, Wang X T. Trans Mater Heat Treat, 2008; 29(2): 60
(徐海卫, 杨王玥 , 孙祖庆, 王西涛. 材料热处理学报, 2008; 29(2): 60)

[9] Eghbali B, Abdollah–zadeh A. Mater Process Technol, 2006; 180: 44
[10] Eghbali B, Abdollah–zadeh A. Mater Des, 2007; 28: 1021
[11] Yang P, Fu Y Y, Cui F E, Sun Z Q. Acta Metall Sin, 2001; 37: 601
(杨平, 傅云义, 崔凤娥, 孙祖庆. 金属学报, 2001; 37: 601)
[12] Yang P, Fu Y Y, Cui F E, Sun Z Q. Acta Metall Sin, 2001; 37: 609
(杨平, 傅云义, 崔凤娥, 孙祖庆. 金属学报, 2001; 37: 609)
[13] Dong Y, Xu Y B, Xiao B L, Wu D. J Northeast Univ, 2008; 29: 1431
(董 毅, 许云波, 肖宝亮, 吴迪. 东北大学学报, 2008; 29: 1431)
[14] G´omez M, Medina S F, Quispe A, Valles P. ISIJ Int, 2002; 42: 423
[15] Ma L Q, Liu Z Y, Jiao S H, Yuan X Q, Wu D. Acta Metall Sin (Engl Lett), 2006; 19: 271

[1] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[2] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[3] Min LI, Jing LIU, Qingwei JIANG. Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature[J]. 金属学报, 2017, 53(8): 1001-1010.
[4] Jiangnan MA,Ruizhen WANG,Caifu YANG,Xiaoqin ZHA,Lijuan ZHANG. Effect of Surface Layer with Ultrafine Grains on Crack Arrestability of Heavy Plate[J]. 金属学报, 2017, 53(5): 549-558.
[5] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[6] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[7] YANG Xuyue ZHANG Zhiling WANG Jun QIN Jia CHEN Zhiyong. PREPARATION OF ULTRAFINE–GRAINED COPPER ALLOY PROCESSED BY ANNEALING TREATMENT AFTER MULTI–DIRECTIONAL COMPRESSION[J]. 金属学报, 2011, 47(12): 1561-1566.
[8] FU Liming SHAN Aidang WANG Wei. EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL[J]. 金属学报, 2010, 46(7): 832-837.
[9] HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; NIE Yihong; CHU Zuoming; CHEN Yunbo. Delayed Fracture Behavior Of Ultrafine Grained High Strength Steel[J]. 金属学报, 2004, 40(6): 561-.
[10] CHEN Guoan; YANG Wangyue; GUO Shouzhen; SUN Zuqing. Microstructure Evolution During Eformation--Enhanced Transformation in[J]. 金属学报, 2004, 40(10): 1079-1084 .
No Suggested Reading articles found!