Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (11): 1309-1313    DOI:
论文 Current Issue | Archive | Adv Search |
MESO-SCALE SIMULATION OF FRANK-READ DISLOCATION SOURCES
YU Yong; PAN Xiaoxia
Institute of System Engineering; China Academy of Engineering Physics; Mianyang 621900
Cite this article: 

YU Yong PAN Xiaoxia. MESO-SCALE SIMULATION OF FRANK-READ DISLOCATION SOURCES. Acta Metall Sin, 2009, 45(11): 1309-1313.

Download:  PDF(860KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The computation method of the interaction force between adjacent dislocation segments and the discretization method of the dislocation line in the 3D model of discrete dislocation dynamics were improved in order to simulate the evolution of Frank-Read (FR) dislocation source on the meso-scale. The simulation results show that the improved model can more accurately simulate the critical shear stresses and dislocation configurations of the FR dislocation sources with different initial lengths. Moreover, the smaller dislocation loop is formed by FR dislocation source when larger stress loaded, and approaches the dislocation loop formed without considering the interactions among the dislocation segments. Under the same loaded stress, the larger loop is formed with increasing the Peierls stress. However, the drag coefficient only affects the formation time of the loop, but can not affect the loop size. This kind of nonlinear evolution of dislocation is caused by the interactions among the dislocation segments.

Key words:  Frank-Read dislocation source      model of dislocation dynamics      meso-scale simulation     
Received:  02 April 2009     
ZTFLH: 

O77

 
Fund: 

Supported by Science and Technology Foundation of China Academy of Engineering Physics (No.2007B04004)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I11/1309

[1] Bulatov V V. J Comput Aided Mater Des, 2002; 9: 133
[2] Kubin L P. Phys Status Solidi, 1993; 135A: 433
[3] Raabe D. Comput Mater Sci, 1998; 11: 1
[4] Zbib H M, Rabia T D, Rhee M, Hirth J P. J Nucl Mater, 2000; 276: 154
[5] Rhee M, Zbib H M, Hirth J P, Huang H, Rubia T D. Modell Simul Mater Sci Eng, 1998; 6: 467
[6] Zbib H M, Rhee M, Hirth J P. Int J Mech Sci, 1998; 40: 113
[7] Geipel T. Acta Mater, 1997; 45: 2639
[8] Faradjian A K, Friedman L H, Chrzan D C. Modell Simul Mater Sci Eng, 1999; 7: 479
[9] Hirth J P, Lothe J. Theory of Dislocation. New York: John Weiley & Sons, 1982: 133
[10] Cai W, Arsenlis A, Weinbergr C R, Bulatov V V. J Mech Phys Solids, 2006; 54: 561
[11] Yu Y, Pan X X, Rong Y H. Acta Metall Sin (Engl Lett), 2008; 21: 94
[12] Mughrabi H. Mater Sci Eng, 2001; A309–310: 237
[13] Weygand D, Friedman L H, Van der Giessen E, Needlemen A. Modell Simul Mater Sci Eng, 2002; 10: 437
[14] Ghoniem N M, Tong S H, Sun L Z. Phys Rev, 2000; 61B: 913

No related articles found!
No Suggested Reading articles found!