Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 769-774     DOI:
Research Articles Current Issue | Archive | Adv Search |
STUDY OF 3D QUASI--STATIONARY GRAIN SIZE DISTRIBUTION DERIVED FROM MACPHERSON—SROLOVITZ TOPOLOGY--RELATED GRAIN GROWTH RATE EQUATION
;
Cite this article: 

;. STUDY OF 3D QUASI--STATIONARY GRAIN SIZE DISTRIBUTION DERIVED FROM MACPHERSON—SROLOVITZ TOPOLOGY--RELATED GRAIN GROWTH RATE EQUATION. Acta Metall Sin, 2008, 44(7): 769-774 .

Download:  PDF(485KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on a new three-dimensional topology-related grain growth rate equation proposed recently by MacPherson and Srolovitz, a set of analytical quasi-stationary grain size distributions were obtained. One of such distribution functions can be used to describe satisfactorily the three-dimensional quasi-stationary grain size distribution obtained from experimental measurement results for pure iron by serial sectioning, and those obtained from computer simulations by vertex method, surface evolver method, phase-field method, Monte Carlo method with Potts model. The corresponding grain size distribution curve is very similar with those of available theoretical quasi-stationary grain size distributions in literature.
Key words:  grain growth      grain size distribution      quasi-stationary      computer simulation      
Received:  24 September 2007     
ZTFLH:  TG111  
  O189  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/769

[1]Hillert M.Acta Metall,1965;13:227
[2]Atkinson H V.Acta Metall,1988;36:469
[3]Mullins W W.J Appl Phys,1956;27:900
[4]Yu H B.Doctorate Dissertation,University of Science and Technology Beijing,1997 (于海波.北京科技大学博士学位论文,1997)
[5]Yu H B,Liu G Q.China Sci Bull,1996;41:2000 (于海波,刘国权.科学通报,1996;41:2000)
[6]Liu G Q,Song X Y,Yu H B,Gu N J.Acta Metall Sin, 1999;35:245 (刘国权,宋晓艳,于海波,谷南驹.金属学报,1999;35:245)
[7]Wang C,Liu G Q,Yu H B.Acta Metall Sin,2004;40: 1233 (王超,刘国权,于海波.金属学报,2004;40:1233)
[8]MacPherson R D,Srolovitz D J.Nature,2007;446:1053
[9]Hilgenfeldt S,Kraynik A M,Koehler S A,Stone H A.Phys Rev Left,2001;86:2685
[10]Hilgenfeldt S,Kraynik A M,Reinelt D A,Sulliwan J M. Europhys Left,2004;67:484
[11]Glicksman M E.Philos Mag,2005;85:3
[12]Rios P R,Glicksman M E.Acta Mater,2006;54:1041
[13]Kinderlehrer D.Nature,2007;446:995
[14]Wang H,Liu G Q.Acta Metall Sin,2008;44:13 (王浩,刘国权.金属学报,2008;44:13)
[15]Brown L C.Acta Metall,1989;37:71
[16]Coughlan S D,Fortes M A.Scr Metall Mater,1993;28: 1471
[17]Zhang C,Suzuki A,Ishimaru T,Enomoto M.Metall Mater Trans,2004;35A:1927
[18]Weygand D,Brechet Y,Lepinoux J,Gust W.Philos Mag, 1999;79B:703
[19]Wakai F,Enomoto N,Ogawa H.Acta Mater,2000;48: 1297
[20]Krill C E,Chen L Q.Acta Mater,2002;50:3057
[21]Wang H,Liu G Q,Qin X G.J Univ Sci Technol Beijing, in press (王浩,刘国权,秦湘阁.北京科技大学学报,待发表)
[22]Wang C,Liu G Q.Sci China,2004;47E:112
[23]Rios P R.Scr Mater,1999;40:665
[24]Rios P R.Scr Mater,1999;41:1283
[25]Rios P R.Scr Mater,2006;54:1633
[26]Wang C,Liu G Q,Wang G F,Xue W B.Mater Sci Eng, 2007;A454—455:547
[1] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[3] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[4] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[7] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[8] WU Huibin, WU Fengjuan, YANG Shanwu, TANG Di. THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION[J]. 金属学报, 2014, 50(3): 269-274.
[9] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[10] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[11] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[12] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
[13] ZHOU Guangzhao WANG Yongxin CHEN Zheng. PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH[J]. 金属学报, 2012, 48(2): 227-234.
[14] CHEN Weiye TONG Weiping ZHANG Hui ZHAO Xiang ZUO Liang. TEXTURE EVOLUTION AND GROWTH OF DIFFERENTLY SIZED GRAINS IN IF STEEL DURING ANNEALING[J]. 金属学报, 2010, 46(9): 1055-1060.
[15] FU Liming SHAN Aidang WANG Wei. EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL[J]. 金属学报, 2010, 46(7): 832-837.
No Suggested Reading articles found!